Exercise 11.1

Question 1. Fill in the blanks.
(i) The centre of a circle lies in \qquad of the circle.
(exterior/interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in \qquad of the circle. (exterior/interior)
(iii) The longest chord of a circle is a \qquad of the circle.
(iv) An arc is a \qquad when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and \qquad of the circle.
(vi) A circle divides the plane, on which it lies, in \qquad parts.

Solution

(i) The centre of a circle lies in interior of the circle.
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.
(iii) The longest chord of a circle is a diameter of the circle.
(iv) An arc is a semi-circle when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and chord of the circle.
(vi) A circle divides the plane, on which it lies, in three parts.

Question 2. Write True or False. Give reason for your answers.
(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.

Solution

(i) True. Because all points are equidistant from the centre to the circle.
(ii) False. Because circle has infinitely may equal chords can be drawn.
(iii) False. Because all three arcs are equal, so their is no difference between the major and minor arcs.
(iv) True. By the definition of diameter, that diameter is twice the radius.
(v) False. Because the sector is the region between two radii and an arc.
(vi) True. Because circle is a part of the plane figure.

11 Circles

Exercise 11.2

Question 1. Recall that two circles are congruent, if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres
Solution Given $M N$ and $P Q$ are two equal chords of two congruent circles with centre at O and O^{\prime}.
To prove

$$
\angle M O N=\angle P O^{\prime} Q
$$

Proof $\ln \triangle M O N$ and $\triangle P O^{\prime} Q$, we have

$$
\begin{array}{lr}
M O=P O^{\prime} & \text { (Radii of congruent circles) } \\
N O=Q O^{\prime} & \text { (Radii of congruent circles) } \\
M N=P Q & \text { (Given) }
\end{array}
$$

\therefore By SSS criterion, we get

$$
\begin{align*}
& \triangle M O N \cong \triangle P O^{\prime} Q \\
& \angle M O N=\angle P O^{\prime} Q \tag{ByCPCT}
\end{align*}
$$

Hence,
Question 2. Prove that, if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
Solution Given $M N$ and $P Q$ are two chords of congruent circles such that angles subtended by these chords at the centres O and O^{\prime} of the circles are equal.

i.e.,
$\angle M O N=\angle P O^{\prime} Q$

$$
\text { To prove } \quad M N=P Q
$$

Proof In $\triangle M O N$ and $\triangle P O^{\prime} Q$, we get
and

$$
\begin{aligned}
M O & =P O^{\prime} & & \text { (Radii of congruent circles) } \\
N O & =Q O^{\prime} & & \text { (Radii of congruent circles) } \\
\angle M O N & =\angle P O^{\prime} Q & & \text { (Given) }
\end{aligned}
$$

\therefore By SAS criteria, we get

$$
\begin{aligned}
\triangle M O N & \cong \triangle P O^{\prime} Q \\
M N & =P Q \quad \text { (By CPCT) }
\end{aligned}
$$

11 Circles

Exercise 11.3

Question 1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?
Solution Different pairs of circles are
(i) Two points common

(iii) No point is common

(ii) One point is common

(iv) No point is common

(v) One point is common

From figures, it is obvious that these pairs many have 0 or 1 or 2 points in common.
Hence, a pair of circles cannot intersect each other at more than two points.

Question 2. Suppose you are given a circle. Give a construction to find its centre.

Solution Steps of construction

1. Taking three points P, Q and R on the circle.
2. Join $P Q$ and $Q R$.
3. Draw $M Q$ and $N S$, respectively the perpendicular bisectors of $P Q$ and $R Q$, which intersect each other at O.
Hence, O is the centre of the circle.
Question 3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Solution Given Two circles with centres O and O^{\prime} intersect at two points M and N so that $M N$ is the common chord of the two circles and $O O^{\prime}$ is the line segment joining the centres of the two circles. Let $O O^{\prime}$ intersect $M N$ at P.
To prove $O O^{\prime}$ is the perpendicular bisector of $M N$.

Construction Draw line segments $O M, O N, O^{\prime} M$ and $O^{\prime} N$.
Proof $\ln \triangle O M O^{\prime}$ and $O N O^{\prime}$, we get

$$
\begin{array}{rrr}
O M & =O N & \text { (Radii of the same circle) } \\
O^{\prime} M=O^{\prime} N & \text { (Radii of the same circle) } \\
O O^{\prime}=O O^{\prime} & \text { (Common) }
\end{array}
$$

\therefore By SSS criterion, we get

$$
\triangle O M O^{\prime} \cong O N O^{\prime}
$$

$$
\begin{array}{llr}
\text { So, } & \angle M O O^{\prime}=\angle N O O^{\prime} & \text { (By CPCT) } \\
\therefore & \angle M O P=\angle N O P & \ldots \text { (i) } \\
& \left(\because \angle M O O^{\prime}=\angle M O P \text { and } \angle N O O^{\prime}=\angle N O P\right)
\end{array}
$$

In $\triangle M O P$ and $\triangle N O P$, we get

	$O M$	$=O N$
	$\angle M O P$	$=\angle N O P$
and	$O M$	$=O M$

\therefore By SAS criterion, we get

$$
\begin{aligned}
\Delta M O P & \cong \triangle N O P \\
M P & =N P \\
\angle M P O & =\angle N P O
\end{aligned} \quad \text { (By CPCT) }
$$

So,
and
But $\angle M P O+\angle N P O=180^{\circ}$
$(\because M P N$ is a straight line)
\therefore
$2 \angle M P O=180^{\circ}$
$(\because \angle M P O=\angle N P O)$
\Rightarrow
$\angle M P O=90^{\circ}$
So,
$M P=P N$
and
$\angle M P O=\angle N P O=90^{\circ}$
Hence, $O O^{\prime}$ is the perpendicular bisector of $M N$.

11 Circles

Exercise 11.4

Question 1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Solution Let O and O^{\prime} be the centres of the circles of radii 5 cm and 3 cm , respectively.
Let $A B$ be their common chord.

Given,

$$
O A=5 \mathrm{~cm}, O^{\prime} A=3 \mathrm{~cm} \text { and } O O^{\prime}=4 \mathrm{~cm}
$$

$\therefore \quad A O^{\prime 2}+O O^{\prime 2}=3^{2}+4^{2}=9+16=25$

$$
=O A^{2}
$$

$\therefore O O^{\prime} A$ is a right angled triangle and right angled at O^{\prime}.

Also,

$$
\begin{align*}
\text { Area of } \triangle O O^{\prime} A & =\frac{1}{2} \times O^{\prime} A \times O O^{\prime} \\
& =\frac{1}{2} \times 3 \times 4=6 \text { sq units } \tag{i}\\
\text { area of } \triangle O O^{\prime} A & =\frac{1}{2} \times O O^{\prime} \times A M \\
& =\frac{1}{2} \times 4 \times A M=2 \mathrm{AM} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get

$$
2 A M=6 \Rightarrow A M=3
$$

Since, when two circles intersect at two points, then their centre lie on the perpendicular bisector of the common chord.
$\therefore \quad A B=2 \times A M=2 \times 3=6 \mathrm{~cm}$

Question 2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Solution Given $M N$ and $A B$ are two chords of a circle with centre $O, A B$ and $M N$ intersect at P and $M N=A B$

To prove $M P=P B$ and $P N=A P$
Construction Draw $O D \perp M N$ and $O C \perp A B$.
Join $O P$.
Proof \because

$$
D M=D N=\frac{1}{2} M N
$$

(Perpendicular from centre bisects the chord)
and

$$
A C=C B=\frac{1}{2} A B
$$

(Perpendicular from centre bisects the chord)

$$
M D=B C \text { and } D N=A C \quad(\because M N=A B) \ldots \text { (i) }
$$

In $\triangle O D P$ and $\triangle O P C$

$$
O D=O C
$$

(Equal chords of a circle are equidistant from the centre)

$$
\angle O D P=\angle O C P
$$

$$
O P=O P
$$

\therefore RHS criterion of congruence,

$$
\begin{align*}
& \Delta O D P & \cong \triangle O C P \\
\therefore & D P & =P C \tag{ByCPCT}
\end{align*}
$$

On adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
M D+D P & =B C+P C \\
M P & =P B
\end{aligned}
$$

On subtracting Eq. (ii) from Eq. (i), we get

$$
\begin{aligned}
D N-D P & =A C-P C \\
P N & =A P
\end{aligned}
$$

Hence, $M P=P B$ and $P N=A P$ are proved.

Question 3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
Solution Given $R Q$ and $M N$ are chords of a circle with centre O. $M N$ and $R Q$ intersect at P and $M N=R Q$
To prove

$$
\angle O P C=\angle O P B
$$

Construction Draw $O C \perp R Q$ and $O B \perp M N$.
Join OP.
Proof $\operatorname{In} \triangle O C P$ and $\triangle O B P$, we get

(Each $\left.=90^{\circ}\right)$
(Common)
(Equal chords of a circle are equidistant from the centre)
\therefore By RHS criterion of congruence, we get

$$
\begin{array}{ll}
& \triangle O C P \cong \triangle O B P \\
\therefore & \angle O P C=\angle O P B \tag{ByCPCT}
\end{array}
$$

Question 4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that $A B=C D$ (see figure).

Solution Let $O P$ be the perpendicular from O on line l. Since, the perpendicular from the centre of a circle to a chord bisects the chords.

Now, $B C$ is the chord of the smaller circle and $O P \perp B C$.
$\therefore \quad B P=P C$
Since, $A D$ is a chord of the larger circle and $O P \perp A D$.
$\therefore \quad A P=P D$
On subtracting Eq. (i) from Eq. (ii), we get

$$
A P-B P=P D-P C \Rightarrow A B=C D
$$

Hence proved.

Question 5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Solution Let O be the centre of the circle and Reshma, Salma and Mandip are represented by the points R, S and M, respectively. Let $R P=x \mathrm{~m}$.

Area of $\triangle O R S=\frac{1}{2} \times x \times 5=\frac{5 x}{2}$
$(\because$ In $O R M, R M$ is a chord therefore $O P \perp R M$)
Again,

$$
\begin{equation*}
\text { Area of } \Delta O R S=\frac{1}{2} \times R S \times O N=\frac{1}{2} \times 6 \times 4=12 \tag{ii}
\end{equation*}
$$

$$
\left[\begin{array}{r}
\because R S \text { is a chord, therefore } O N \perp R S . \\
\text { In right } \triangle R O N, O R^{2}=R N^{2}+N O^{2} \Rightarrow 5^{2}=3^{2}+N O^{2} \\
\Rightarrow N O^{2}=25-9=16 \Rightarrow N O=4 \mathrm{~cm}
\end{array}\right]
$$

From Eqs. (i) and (ii), we get

$$
\Rightarrow \quad \begin{aligned}
\frac{5 x}{2} & =12 \\
x & =\frac{24}{5}
\end{aligned}
$$

Since, P is the mid-point of $R M$

$$
\begin{aligned}
\therefore \quad R M & =2 R P=2 \times \frac{24}{5} \\
& =\frac{48}{5}=9.6 \mathrm{~m}
\end{aligned}
$$

Hence, the distance between Reshma and Mandip is 9.6 m .

Question 6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Solution Let Ankur, Syed and David standing on the point P, Q and R.
Let $P Q=Q R=P R=x$

Therefore, $\triangle P Q R$ is an equilateral triangle. Drawn altitudes $P C, Q D$ and $R N$ from vertices to the sides of a triangle and intersect these altitudes at the centre of a circle M.
As $P Q R$ is an equilateral, therefore these altitudes bisects their sides.
In $\triangle P Q C$,

| $P Q^{2}$ | $=P C^{2}+Q C^{2} \quad$ (By Pythagoras theorem) | |
| ---: | :--- | ---: | :--- |
| x^{2} | $=P C^{2}+\left(\frac{x}{2}\right)^{2}$ | |
| $P C^{2}$ | $=x^{2}-\frac{x^{2}}{4}=\frac{3 x^{2}}{4} \quad\left(\because Q C=\frac{1}{2} Q R=\frac{x}{2}\right)$ | |
| $\therefore \quad$ Now, $\quad P C$ | $=\frac{\sqrt{3} x}{2}$ | |
| | $M C$ | $=P C-P M=\frac{\sqrt{3} x}{2}-20 \quad(\because P M=$ radius $=20 \mathrm{~m})$ |

In $\triangle Q C M$,

$$
\begin{aligned}
Q M^{2} & =Q C^{2}+M C^{2} \\
\therefore \quad(20)^{2} & =\left(\frac{x}{2}\right)^{2}+\left(\frac{\sqrt{3} x}{2}-20\right)^{2} \quad(\because Q M=\text { radius }=20 \mathrm{~m}) \\
400 & =\frac{x^{2}}{4}+\frac{3 x^{2}}{4}-20 \sqrt{3} x+400 \\
0 & =x^{2}-20 \sqrt{3} x \\
x^{2} & =20 \sqrt{3} x \\
x & =20 \sqrt{3} \\
\text { Hence, } \quad P Q & =Q R=P R=20 \sqrt{3} \mathrm{~m}
\end{aligned} \quad \text { (Divide by } x \text {) }
$$

11 Circles

Exercise 11.5

Question 1. In figure A, B and C are three points on a circle with centre 0 such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc $A B C$, find $\angle A D C$.

Solution $\therefore \angle A O C=\angle A O B+\angle B O C=60^{\circ}+30^{\circ}=90^{\circ}$
\therefore Arc $A B C$ makes 90° at the centre of the circle.

$$
\therefore \quad \angle A D C=\frac{1}{2} \angle A O C
$$

$(\because$ The angle subtended by an arc at the centre is double the angle subtended by it any part of the circle.)

$$
=\frac{1}{2} \times 90^{\circ}=45^{\circ}
$$

Question 2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
Solution Let $B C$ be chord, which is equal to the radius. Join $O B$ and $O C$.

Given,

$$
B C=O B=O C
$$

$\therefore \triangle O B C$ is an equilateral triangle.

$$
\angle B O C=60^{\circ}
$$

$$
\begin{aligned}
\therefore \quad B A C & =\frac{1}{2} \angle B O C \\
& =\frac{1}{2} \times 60^{\circ}=30^{\circ}
\end{aligned}
$$

(\because The angle subtended by an arc at the centre is double the angle subtended by it any part of the circle.)
Here, $A B M C$ is a cyclic quadrilateral.

$$
\begin{array}{lc}
\therefore & \angle B A C+\angle B M C=180^{\circ} \\
\Rightarrow & \left(\because \text { In a cyclic quadrilateral the sum of opposite angles is } 180^{\circ}\right) \\
& \angle B M C=180^{\circ}-30^{\circ}=150^{\circ}
\end{array}
$$

Question 3. In figure, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre 0 . Find $\angle O P R$.

Solution $\therefore \angle P O R=2 \angle P Q R=2 \times 100^{\circ}=200^{\circ}$
(Since, the angle subtended by the centre is double the angle subtended by circumference.)
Since, in $\triangle O P R$,

$$
\begin{align*}
\angle P O R & =360^{\circ}-200^{\circ}=160^{\circ} \tag{i}\\
O P & =O R
\end{align*}
$$

Again, $\triangle O P R$,
$\therefore \quad \angle O P R=\angle O R P$ (By property of isosceles triangle)
In $\triangle P O R$,
$\angle O P R+\angle O R P+\angle P O R=180^{\circ}$
From Eqs. (i) and (ii), we get

$$
\begin{array}{ll}
& \angle O P R+\angle O P R+160^{\circ}=180^{\circ} \tag{ii}\\
\therefore & 2 \angle O P R=180^{\circ}-160^{\circ}=20^{\circ} \\
\therefore & \angle O P R=\frac{20^{\circ}}{2}=10^{\circ}
\end{array}
$$

Question 4. In figure, $\angle A B C=69^{\circ}, \angle A C B=31^{\circ}$, find $\angle B D C$.

Solution \because

$\angle B D C=\angle B A C$
(Since, the angles in the same segment are equal)
Now, in $\triangle A B C$,

$$
\begin{array}{lc}
\therefore & \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & \angle A+69^{\circ}+31^{\circ}=180^{\circ} \\
\Rightarrow & \angle A+100^{\circ}=180^{\circ} \\
\therefore & \angle A=180^{\circ}-100^{\circ}=80^{\circ} \\
\Rightarrow & \angle B A C=80^{\circ} \\
\therefore \text { From Eq. (i), } & \angle B D C=80^{\circ}
\end{array}
$$

Question 5. In figure, A, B and C are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

Solution \therefore
\Rightarrow
Again,
\Rightarrow
$\therefore \ln \triangle C D E$
$\therefore \ln \triangle C D E$
$\therefore \quad \angle A=180^{\circ}-70^{\circ}=110^{\circ}$
Hence,
$\angle A B E=\angle E C D$
$\angle A B E=180^{\circ}$

$$
\begin{array}{lr}
\angle A E B=180^{\circ}-130^{\circ}=50^{\circ} & \text { (Linear pair) ...(i) } \\
\angle C E D=\angle A E B=50^{\circ} & \text { (Vertically opposite) } \\
\angle A B D=\angle A C D &
\end{array}
$$

(Since, the angles in the same segment are equal)

Question 6. $A B C D$ is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle D B C=70^{\circ}, \angle B A C$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Solution \because Angles in the same segment are equal.

$\therefore \quad \angle B D C=\angle B A C$
$\therefore \quad \angle B D C=30^{\circ}$
In $\triangle B C D$, we have
$\therefore \quad \angle B D C+\angle D B C+\angle B C D=180^{\circ}$
(Given, $\angle D B C=70^{\circ}$ and $\angle B D C=30^{\circ}$)
$\therefore \quad 30^{\circ}+70^{\circ}+\angle B C D=180^{\circ}$
$\therefore \quad \angle B C D=180^{\circ}-30^{\circ}-70^{\circ}=80^{\circ}$
If $A B=B C$, then

$$
\angle B C A=\angle B A C=30^{\circ}
$$

(Angles opposite to equal sides in a triangle are equal)
Now, $\quad \angle E C D=\angle B C D-\angle B C A=80^{\circ}-30^{\circ}=50^{\circ}$

$$
\left(\because \angle B C D=80^{\circ} \text { and } \angle B C A=30^{\circ}\right)
$$

Hence,

$$
\angle B C D=80^{\circ}
$$

and

$$
\angle E C D=50^{\circ}
$$

Question 7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
Solution Given Diagonals $N P$ and $Q M$ of a cyclic quadrilateral are diameters of the circle through the vertices M, P, Q and N of the quadrilateral NQPM.

To prove Quadrilateral NQPM is a rectangle.
Proof \because

$$
O N=O P=O Q=O M
$$

(Radii of circle)
Now,

$$
O N=O P=\frac{1}{2} N P
$$

and

$$
O M=O Q=\frac{1}{2} M Q
$$

$\therefore \quad N P=M Q$
Hence, the diagonals of the quadrilateral $M P Q N$ are equal and bisect each other.
So, quadrilateral NQPM is a rectangle.

Question 8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Solution Given Non-parallel sides $P S$ and $Q R$ of a trapezium $P Q R S$ are equal.

To prove $A B C D$ is a cyclic trapezium.
Construction Draw $S M \perp P Q$ and $R N \perp P Q$.
Proof In $\triangle S M P$ and $\triangle R N Q$, we get

$$
\begin{align*}
S P & =R Q \tag{Given}\\
\angle S M P & =\angle R N Q \\
S M & =R N
\end{align*}
$$

(\because Distance between two parallel lines is always equal)
\therefore By RHS criterion, we get

$$
\Delta S M P \cong \Delta R N Q
$$

So,

$$
\begin{equation*}
\angle P=\angle Q \tag{ByCPCT}
\end{equation*}
$$

and
$\angle P S M=\angle Q R N$
Now,
$\angle P S M=\angle Q R N$
$\left(\right.$ Each $\left.=90^{\circ}\right)$
and

	$\triangle S M P$	$\cong \triangle R N Q$
So,	$\angle P$	$=\angle Q$
and	$\angle P S M$	$=\angle Q R N$
Now,	$\angle P S M$	$=\angle Q R N$
\therefore	$90^{\circ}+\angle P S M$	$=90^{\circ}+\angle Q R N$

Hence, $P Q R S$ is a cyclic trapezium.

Question 9. Two circles intersect at two points B and C. Through B, two line segments $A B D$ and $P B Q$ are drawn to intersect the circles at A, D and P, Q respectively (see figure). Prove that $\angle A C P=\angle Q C D$.

Solution Given Two circles intersect at two points B and C. Through B two line segments $A B D$ and $P B Q$ are drawn to intersect the circles at A, D and P, Q, respectively.
To prove

$$
\begin{aligned}
& \angle A C P=\angle Q C D \\
& \angle A C P=\angle A B P \text { (Angles in the same segment) } \ldots \text { (i) } \\
& \angle Q C D=\angle Q B D \text { (Angles in the same segment) } \ldots \text { (ii) } \\
& \angle A B P=\angle Q B D \quad \text { (Vertically opposite angles) }
\end{aligned}
$$

From Eqs. (i) and (ii), we get $\angle A C P=\angle Q C D$
Question 10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Solution Given Two circles are drawn with sides $A C$ and $A B$ of $\triangle A B C$ as diameters. Both circles intersect each other at D.
To prove D lies on $B C$.
Construction Join $A D$.
Proof Since, $A C$ and $A B$ are the diameters of the two circles.

$$
\begin{aligned}
& \angle A D B=90^{\circ} \quad(\therefore \text { Angles in a semi-circle) } \ldots \text { (i) } \\
& \angle A D C=90^{\circ} \quad(\text { Angles in a semi-circle) } \ldots \text { (ii) }
\end{aligned}
$$

and

On adding Eqs. (i) and (ii), we get

$$
\angle A D B+\angle A D C=90^{\circ}+90^{\circ}=180^{\circ}
$$

Hence, $B C D$ is a straight line.
So, D lies on $B C$.

Question 11. $A B C$ and $A D C$ are two right angled triangles with common hypotenuse $A C$. Prove that $\angle C A D=\angle C B D$.

Solution Since, $\triangle A D C$ and $\triangle A B C$ are right angled triangles with common hypotenuse.

Draw a circle with $A C$ as diameter passing through B and D. Join $B D$.
\because Angles in the same segment are equal.
$\therefore \quad \angle C B D=\angle C A D$
Question 12. Prove that a cyclic parallelogram is a rectangle.
Solution Given $P Q R S$ is a parallelogram inscribed in a circle.
To prove $P Q R S$ is a rectangle.

Proof Since, $P Q R S$ is a cyclic quadrilateral.

(\because Sum of opposite angles in a cyclic quadrilateral is 180°) ...(i)
But

$$
\begin{equation*}
\angle P=\angle R \quad(\because \text { In a }| | \text { gm opposite angles are equal }) \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get

$$
\angle P=\angle R=90^{\circ}
$$

Similarly, $\quad \angle Q=\angle S=90^{\circ}$
\therefore Each angle of $P Q R S$ is 90°.
Hence, $P Q R S$ is a rectangle.

11 Circles

Exercise 11.6 (Optional)

Question 1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Solution Given Two circles with centres O and O^{\prime} which intersect each other at C and D.

To prove

$$
\angle O C O^{\prime}=\angle O D O^{\prime}
$$

Construction Join $O C, O D, O^{\prime} C$ and $O^{\prime} D$
Proof $\ln \triangle O C O^{\prime}$ and $\triangle O D O^{\prime}$, we have

$O C=O D$	(Radii of the same circle)
$O^{\prime} C=O^{\prime} D$	(Radii of the same circle)
$O O^{\prime}=O O^{\prime}$	(Common)

\therefore By SSS criterion, we get

Hence,

$$
\begin{aligned}
& \triangle O C O^{\prime} \cong \triangle O D O^{\prime} \\
& \angle O C O^{\prime}=\angle O D O^{\prime}
\end{aligned}
$$

(By CPCT)
Question 2. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm , respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.

Solution Let O be the centre of the given circle and let its radius be $b \mathrm{~cm}$. Draw $O N \perp A B$ and $O M \perp C D$ since, $O N \perp A B, O M \perp C D$ and $A B \| C D$, therefore points N, O, M are collinear

Let
$\therefore \quad O M=(6-a) \mathrm{cm}$

Join $O A$ and $O C$.
Then,

$$
O A=O C=b c \mathrm{~m}
$$

Since, the perpendicular from the centre to a chord of the circle bisects the chord.
Therefore, $\quad A N=N B=2.5 \mathrm{~cm}$ and $O M=M D=5.5 \mathrm{~cm}$
In $\triangle O A N$ and $\triangle O C M$, we get

$$
O A^{2}=O N^{2}+A N^{2}
$$

and

$$
O C^{2}=O M^{2}+C M^{2}
$$

$\Rightarrow \quad b^{2}=a^{2}+(2.5)^{2}$
and

$$
\begin{equation*}
b^{2}=(6-a)^{2}+(5.5)^{2} \tag{i}
\end{equation*}
$$

So,

$$
\begin{array}{ll}
\text { So, } & a^{2}+(2.5)^{2}=(6-a)^{2}+(5.5)^{2} \\
\Rightarrow & a^{2}+6.25=36-12 a+a^{2}+30.25
\end{array}
$$

$$
\Rightarrow \quad 12 a=60 \Rightarrow a=5
$$

On putting $a=5$ in Eq. (i), we get

$$
\begin{aligned}
b^{2} & =(5)^{2}+(2.5)^{2} \\
& =25+6.25=31.25 \\
r & =\sqrt{31.25}=5.6 \mathrm{~cm} \text { (Approx.) }
\end{aligned}
$$

So,
Question 3. The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

Solution Let $P Q$ and $R S$ be two parallel chords of a circle with centre O such that $P Q=6 \mathrm{~cm}$ and $R S=8 \mathrm{~cm}$.
Let a be the radius of circle.
Draw $O N \perp R S, O M \perp P Q$. Since, $P Q \| R S$ and $O N \perp R S, O M \perp P Q$, therefore points O, N, M are collinear.

$\because O M=4 \mathrm{~cm}$ and M and N are the mid-points of $P Q$ and $R S$ respectively.

$$
\begin{array}{ll}
\therefore & P M=M Q=\frac{1}{2} P Q=\frac{6}{2}=3 \mathrm{~cm} \\
\text { and } & R N=N S=\frac{1}{2} R S=\frac{8}{2}=4 \mathrm{~cm}
\end{array}
$$

In $\triangle O P M$, we have

$$
\begin{aligned}
& O P^{2} & =O M^{2}+P M^{2} \\
\Rightarrow & a^{2}=4^{2}+3^{2} & =16+9=25 \\
\Rightarrow & a & =5
\end{aligned}
$$

In $\triangle O R N$, we have

$$
\begin{array}{lr}
& O R^{2}=O N^{2}+R N^{2} \\
\Rightarrow & a^{2}=O N^{2}+(4)^{2} \\
\Rightarrow & 25=O N^{2}+16 \\
\Rightarrow & O N^{2}=9 \\
\Rightarrow & O N=3 \mathrm{~cm}
\end{array}
$$

Hence, the distance of the chord $R S$ from the centre is 3 cm .
Question 4. Let the vertex of an angle $A B C$ be located outside a circle and let the sides of the angle intersect equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords $A C$ and $D E$ at the centre.

Solution Since, an exterior angle of a triangle is equal to the sum of the interior opposite angles.

$\therefore \ln \triangle B D C$, we get

$$
\begin{equation*}
\angle A D C=\angle D B C+\angle D C B \tag{i}
\end{equation*}
$$

Since, angle at the centre is twice at a point on the remaining part of circle.

$$
\begin{array}{ll}
\therefore & \angle D C E=\frac{1}{2} \angle D O E \\
\Rightarrow & \angle D C B=\frac{1}{2} \angle D O E \\
\text { and } & \angle A D C=\frac{1}{2} \angle A O C \\
\therefore & \frac{1}{2} \angle A O C=\angle A B C+\frac{1}{2} \angle D O E
\end{array} \quad(\because \angle D C E=\angle D C B)
$$

Hence, $\angle A B C$ is equal to half the difference of angles subtended by the chords $A C$ and $D E$ at the centre.

Question 5. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
Solution Given $P Q R S$ is a rhombus. $P R$ and $S Q$ are its two diagonals which bisect each other at right angles.
To prove A circle drawn on $P Q$ as diameter will pass through O.
Construction Through O, draw $M N \| P S$ and $E F \| P Q$.
Proof \because

$$
P Q=S R \Rightarrow \frac{1}{2} P Q=\frac{1}{2} S R
$$

So,

$$
P N=S M
$$

Similarly,

$$
P E=O N
$$

So,
Therefore, a circle drawn with N as centre and
 radius $P N$ passes through P, O, Q.

Question 6. $A B C D$ is a parallelogram. The circle through A, B and C intersect $C D$ (produced if necessary) at E. Prove that $A E=A D$.

Solution Since, $A B C E$ is a cyclic quadrilateral, therefore

$$
\begin{equation*}
\angle A E D+\angle A B C=180^{\circ} \tag{i}
\end{equation*}
$$

(\because Sum of opposite angle of a cyclic quadrilateral is 180°)
$\because \quad \angle A D E+\angle A D C=180^{\circ} \quad$ (EDC is a straight line)
So, $\quad \angle A D E+\angle A B C=180^{\circ}$
$(\because \angle A D C=\angle A B C$ opposite angle of a $\|$ gm) \ldots (ii)
From Eqs. (i) and (ii), we get

$$
\begin{array}{rlrl}
& \angle A E D+ & \angle A B C & =\angle A D E+\angle A B C \\
\Rightarrow & \angle A E D= & \angle A D E
\end{array}
$$

\therefore In $\triangle A E D$, we have
So,

$$
\begin{aligned}
\angle A E D & =\angle A D E \\
A D & =A E
\end{aligned}
$$

(\because Sides opposite to equal angles of a triangle are equal)

Question 7. $A C$ and $B D$ are chords of a circle which bisect each other. Prove that (i) $A C$ and $B D$ are diameters, (ii) $A B C D$ is a rectangle.

Solution (i) Let $B D$ and $A C$ be two chords of a circle bisect at P.

In $\triangle A P B$ and $\triangle C P D$, we get

$$
\begin{aligned}
P A & =P C & & (\because P \text { is the mid-point of } A C) \\
\angle A P B & =\angle C P D & & (\text { Vertically opposite angles }) \\
P B & =P D & & (\because P \text { is the mid-point of } B D)
\end{aligned}
$$

\therefore By SAS criterion

$$
\begin{array}{rlrl}
& & \triangle C P D & \cong \triangle A P B \\
& \therefore & C D & =A B \tag{ByCPCT}\\
\Rightarrow & \overparen{C D} & =\overparen{A B}
\end{array}
$$

Similarly, in $\triangle A P D$ and $\triangle C P B$, we get

$$
\begin{equation*}
\overparen{C B}=\overparen{A D} \tag{ii}
\end{equation*}
$$

Adding Eqs. (i) and (ii), we get

$$
\overparen{C D}+\overparen{C B}=\overparen{A B}+\overparen{A D} \Rightarrow \overparen{B C D}=\overparen{B A D}
$$

$\therefore B D$ divides the circle into two equal parts. So, $B D$ is a diameter.
Similarly, $A C$ is a diameter.
(ii) Now, $B D$ and $A C$ bisect each other.

So, $A B C D$ is a parallelogram.
Also,

$$
A C=B D
$$

$\therefore A B C D$ is a rectangle.
Question 8. Bisectors of angles A, B and C of a $\triangle A B C$ intersect its circumcircle at D, E and F, respectively. Prove that the angles of the $\triangle D E F$ are $90^{\circ}-\frac{1}{2} A, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} C$.

Solution $\because \angle E D F=\angle E D A+\angle A D F$
$\because \angle E D A$ and $\angle E B A$ are the angles in the same segment of the circle.
$\therefore \quad \angle E D A=\angle E B A$
and similarly $\angle A D F$ and $\angle F C A$ are the angles in the same segment and hence

$$
\angle A D F=\angle F C A
$$

\therefore From Eq (i)

$$
\angle E D F=\frac{1}{2} \angle B+\frac{1}{2} \angle C
$$

\Rightarrow
Similarly,

$$
\angle D=\frac{\angle B+\angle C}{2}
$$

$$
\angle F=\frac{\angle A+\angle B}{2}
$$

$$
\angle E=\frac{\angle C+\angle A}{2}
$$

So,

$$
\angle D=\frac{\angle B+\angle C}{2}
$$

$$
=\frac{180^{\circ}-\angle A}{2} \quad\left(\because \angle A+\angle B+\angle C=180^{\circ}\right)
$$

$$
\angle E=\frac{180^{\circ}-\angle B}{2}
$$

and

$$
\angle F=\frac{180^{\circ}-\angle C}{2}
$$

\Rightarrow

$$
\angle D=90^{\circ}-\frac{\angle A}{2}
$$

\Rightarrow

$$
\angle E=90^{\circ}-\frac{\angle B}{2}
$$

and

$$
\angle F=90^{\circ}-\frac{\angle C}{2}
$$

Question 9. Two congruent circles intersect each other at points A and B. Through A any line segment $P A Q$ is drawn so that P, Q lie on the two circles. Prove that $B P=B Q$.
Solution Let O^{\prime} and O be the centres of two congruent circles.

Since, $A B$ is a common chord of these circles.

$$
\begin{array}{ll}
\therefore & \angle B P A=\angle B Q A \\
& (\because \text { Angle subtended by equal chords are equal) } \\
\Rightarrow & B P=B Q
\end{array}
$$

Question 10. In any $\triangle A B C$, if the angle bisector of $\angle A$ and perpendicular bisector of $B C$ intersect, prove that they intersect on the circumcircle of the $\triangle A B C$.

Solution (i) Let bisector of $\angle A$ meet the circumcircle of $\triangle A B C$ at M.
Join BM and CM.

$\therefore \quad \angle M B C=\angle M A C \quad$ (Angles in same segment)
and $\quad \angle B C M=\angle B A M \quad$ (Angles in same segment)
But $\quad \angle B A M=\angle C A M$
($\because A M$ is bisector of $\angle A$) ...(i)
$\therefore \quad \angle M B C=\angle B C M$
So, $\quad M B=M C$ (Sides opposite to equal angles are equal)
So, M must lie on the perpendicular bisector of $B C$
(ii) Let M be a point on the perpendicular bisector of $B C$ which lies on circumcircle of $\triangle A B C$.
Join $A M$.

Since, M lies on perpendicular bisector of $B C$.
$\therefore \quad B M=C M$

$$
\angle M B C=\angle M C B
$$

But $\quad \angle M B C=\angle M A C$
and $\quad \angle M C B=\angle B A M$
(Angles in same segment)
(Angles in same segment)

So, from Eq. (i),

$$
\angle B A M=\angle C A M
$$

$A M$ is the bisector of A.
Hence, bisector of $\angle A$ and perpendicular bisector of $B C$ at M which lies on circumcircle of $\triangle A B C$.

