9 Circles

Exercise 9.1

Question 1. How many tangents can a circle have?
Solution For every point of a circle, we can draw a tangent. Therefore, infinite tangents can be drawn.

Question 2. Fill in the blanks.
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a \qquad .
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called
\qquad
Solution (i) One. A tangent line touch or intersect the circle only at one point.
(ii) Secant. Any line intersecting the circle at two points is called a secant.
(iii) Two. Maximum a circle an have two parallel tangents which can be drawn to the opposite side of the centre.
(iv) Point of contact.

Question 3. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is
(a) 12 cm
(b) 13 cm
(c) 8.5 cm
(d) $\sqrt{119} \mathrm{~cm}$

Solution (d) Here, $P Q$ is a tangent, which touches a point P of the circle. And $O P=5 \mathrm{~cm}$ is a radius of circle. Join $O Q=12 \mathrm{~cm}$. Since, radius of circle $O P$ is perpendicular to the tangent $P Q$.
\therefore In right $\triangle O P Q$, By Pythagoras theorem $O Q^{2}=O P^{2}+P Q^{2}$
$\Rightarrow \quad(12)^{2}=(5)^{2}+P Q^{2}$

$\Rightarrow \quad P Q^{2}=144-25=119$
$\Rightarrow \quad P Q=\sqrt{119} \mathrm{~cm}$
Question 4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.
Solution Firstly draw a circle with centre O and draw a line I. Now, we draw a two parallel lines to l, such that one line m is tangent to the circle and another n is secant to the circle.

9 Circles

Exercise 9.2

- Choose the correct option and give justification.

Question 1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm

Solution (a) Given that, the length of the tangent $Q P=24 \mathrm{~cm}$ and $Q O=25 \mathrm{~cm}$. Join $O P$.

We know, radius $O P$ is perpendicular to the tangent $P Q$.
In right $\triangle O P Q$

$$
\begin{array}{lll}
& O Q^{2}=O P^{2}+P Q^{2} & \text { (By Pythagoras theorem) } \\
\Rightarrow & 25^{2}=O P^{2}+24^{2} \\
\Rightarrow & O P^{2}=625-576=49 \\
\Rightarrow & O P=7 \mathrm{~cm}
\end{array}
$$

Question 2. In figure, if $T P$ and $T Q$ are the two tangents to a circle with centre 0 so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to

(a) 60°
(b) 70°
(c) 80°
(d) 90°

Solution (b) Join $P Q$,

In $\triangle O P Q$

$$
\begin{array}{ll}
& O P=O Q=\text { radius of circle } \\
\Rightarrow & \angle O P Q=\angle O Q P
\end{array}
$$

(Equal sides have corresponding equal angles)
$\Rightarrow \quad \angle O P Q=\angle O Q P=\frac{180^{\circ}-110^{\circ}}{2}=35^{\circ}$
Since, $O P \perp P T$ and $O Q \perp T Q \quad$ (Radius of circle is perpendicular to the tangent)

```
\therefore }\quad\angleOPT=9\mp@subsup{0}{}{\circ}\mathrm{ and }\angleOQT=9\mp@subsup{0}{}{\circ
=> }\angleOPQ+\angleQPT=9\mp@subsup{0}{}{\circ
and }\quad\angleOQP+\anglePQT=9\mp@subsup{0}{}{\circ
=>
    35}+\angle\angleQPT=90
and }\quad3\mp@subsup{5}{}{\circ}+\anglePQT=9\mp@subsup{0}{}{\circ
```

$\Rightarrow \angle Q P T=55^{\circ}$ and $\angle P Q T=55^{\circ}$
In $\triangle P T Q$,

$$
\begin{array}{rrr}
& \angle Q P T+\angle P Q T+\angle P T Q=180^{\circ} \\
\Rightarrow & 55^{\circ}+55^{\circ}+\angle P T Q=180^{\circ} \\
\Rightarrow & \angle P T Q=180^{\circ}-\left(55^{\circ}+55^{\circ}\right)=70^{\circ}
\end{array}
$$

Question 3. If tangents $P A$ and $P B$ from a point P to a circle with centre 0 are inclined to each other at angle of 80°, then $\angle P O A$ is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 80°

Solution (a) $P A$ and $P B$ are two tangents drawn from a point P.

i.e.,

$$
\angle A P B=80^{\circ}
$$

Join $A B$.
Since, tangents drawn from external point to the circle is equal in lengths.
i.e.,

$$
\begin{align*}
P A & =P B \\
\angle P A B & =\angle P B A \tag{i}
\end{align*}
$$

$\ln \triangle A P B$,

$$
\begin{array}{rlrl}
& \angle A P B+\angle P A B+\angle P B A & =180^{\circ} \\
\Rightarrow & 80^{\circ}+2 \angle P A B & =180^{\circ} \\
\Rightarrow & 2 \angle P A B & =100^{\circ} \\
\Rightarrow & \angle P A B & =50^{\circ} \\
\therefore & \angle P A B= & \angle P B A & =50^{\circ}
\end{array}
$$

Since, $O A \perp P A$ and $O B \perp B P$

$$
\begin{array}{lr}
\therefore & \angle P A O=90^{\circ} \text { and } \angle P B O=90^{\circ} \\
\Rightarrow & \angle P A B+\angle B A O=90^{\circ} \\
\text { and } & \angle P B A+\angle A B O=90^{\circ}
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & 50^{\circ}+\angle B A O=90^{\circ} \\
\text { and } & 50^{\circ}+\angle A B O=90^{\circ} \\
\Rightarrow & \angle B A O=40^{\circ} \text { and } \angle A B O=40^{\circ}
\end{array}
$$

Now, in $\triangle A O B$,

$$
\begin{array}{rlrl}
& & \angle O A B+\angle A B O+\angle A O B & =180^{\circ} \\
\Rightarrow & 40^{\circ}+40^{\circ}+\angle A O B & =180^{\circ} \\
\Rightarrow & \angle A O B=180^{\circ}-80^{\circ} & =100^{\circ}
\end{array}
$$

Since, angle bisector divides an angle into two equal parts.

$$
\therefore \quad \angle P A O=\frac{1}{2} \angle A O B=\frac{1}{2} \times 100^{\circ}=50^{\circ}
$$

Question 4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution Let $A B$ be a diameter of a given circle and let $L M$ and $P Q$ be the tangent lines drawn to the circle at points A and B, respectively. Since, the tangent at a point to a circle is perpendicular to the radius through the point.

$\therefore A B \perp P Q$ and $A B \perp L M$

$$
\begin{array}{ll}
\Rightarrow & \angle P A B=90^{\circ} \\
\text { and } & \angle A B M=90^{\circ} \\
\Rightarrow & \angle P A B=\angle A B M \\
\Rightarrow & P Q \| \angle M
\end{array}
$$

Hence proved.
Question 5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Solution Tangent $M N$ is drawn from point Q of the circle. A perpendicular line $P Q$ is drawn to the $M Q N$ line.

i.e.,
$\angle M Q P=90^{\circ}$
Take any point R on the circle.

Join $P R$ and $Q R$.
By using alternate segment theorem

$$
\angle M Q P=\angle P R Q=90^{\circ}
$$

We know, any chord $P Q$ subtends an angle 90° only when chord $P Q$ is a diameter of the circle.
Hence, perpendicular $P Q$ is always passes through the centre.
Question 6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Solution Given, $O P=5 \mathrm{~cm}$ and $A M=4 \mathrm{~cm}$

$\because \quad O M \perp A M \quad(\because$ Radius is perpendicular to $A M)$
In right $\triangle O M A$,

$$
O P^{2}=O M^{2}+M A^{2}
$$

(By Pythagoras theorem)
$\Rightarrow \quad 5^{2}=O M^{2}+4^{2}$
$\Rightarrow \quad O M^{2}=25-16=9$
$\Rightarrow \quad O M=3 \mathrm{~cm}$
Hence, radius of the circle is 3 cm .
Question 7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.
Solution Here, we draw two circles C_{1} and C_{2} of radii $r_{1}=3 \mathrm{~cm}$ and $r_{2}=5 \mathrm{~cm}$ Now, we draw a chord $A B$ such that it touches the circle C_{1} at point D.
The centre of concentric circle is O.
Now, we draw a perpendicular bisector from O to $A B$ which meets $A B$ at D.

$$
A D=B D
$$

$$
O B^{2}=O D^{2}+D B^{2}
$$

(By Pythagoras theorem)

$$
\begin{array}{ll}
\Rightarrow & 5^{2}=3^{2}+D B^{2} \\
\Rightarrow & D B^{2}=25-9=16 \\
\Rightarrow & D B=4 \mathrm{~cm} \\
\therefore & \text { Length of chord }=A B=2 A D=2 \times 4=8 \mathrm{~cm}
\end{array}
$$

Question 8. A quadrilateral $A B C D$ is drawn to circumscribe a circle (see figure). Prove that $A B+C D=A D+B C$.

Solution Using theorem, the lengths of tangents drawn from an external point to a circle are equal.
Suppose, A is an external point, then

$$
\begin{equation*}
A P=A S \tag{i}
\end{equation*}
$$

Suppose, B is an external point, then

$$
\begin{equation*}
B P=B Q \tag{ii}
\end{equation*}
$$

Suppose, C is an external point, then

$$
\begin{equation*}
C Q=R C \tag{iii}
\end{equation*}
$$

Suppose, D is an external point, then

$$
\begin{equation*}
S D=R D \tag{iv}
\end{equation*}
$$

On adding Eqs. (i), (ii), (iii) and (iv), we get

$$
\begin{array}{rlrl}
& & (A P+B P)+(R C+R D) & =(A S+B Q)+(C Q+S D) \\
\Rightarrow & A B+C D & =(A S+S D)+(B Q+C Q) \\
\Rightarrow & & A B+C D & =A D+B C
\end{array}
$$

Hence proved.
Question 9. In figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Solution Since, tangents drawn from an external point to a circle are equal.
$\therefore \quad A P=A C$
Thus, in $\triangle A P O$ and $\triangle A C O$,

$$
\begin{aligned}
A P & =A C \\
A O & =A O \\
O P & =O C
\end{aligned}
$$

(Common)
(Radius of circle)
\therefore By SSS criterion of congruence, we have

$$
\begin{array}{ll}
& \Delta A P O \cong \triangle A C O \\
\Rightarrow & \angle P A O=\angle O A C \\
\Rightarrow & \angle P A C=2 \angle C A O
\end{array}
$$

Similarly, we can prove that

$$
\begin{array}{ll}
& \angle C B O=\angle O B Q \\
\Rightarrow \quad & \angle C B Q=2 \angle C B O
\end{array}
$$

Since, $X Y \| X^{\prime} Y^{\prime}$
$\therefore \quad \angle P A C+\angle Q B C=180^{\circ}$
(Sum of interior angles on the same side of transversal is 180°)
$\therefore \quad 2 \angle C A O+2 \angle C B O=180^{\circ}$
$\Rightarrow \quad \angle C A O+\angle C B O=90^{\circ}$
In $\triangle A O B$,
$\Rightarrow \quad \angle C A O+\angle C B O+\angle A O B=180^{\circ}$
$\Rightarrow \quad \angle C A O+\angle C B O=180^{\circ}-\angle A O B$
\therefore From Eqs. (i) and (ii), we get

$$
\begin{align*}
& 180^{\circ}-\angle A O B & =90^{\circ} \tag{ii}\\
\Rightarrow & \angle A O B & =90^{\circ}
\end{align*}
$$

Question 10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Solution Let $P Q$ and $P R$ be two tangents drawn from an external point P to a circle with centre O.
We have to prove that,

$$
\begin{array}{ll}
& \angle Q O R=180^{\circ}-\angle Q P R \\
\text { or } & \angle Q O R+\angle Q P R=180^{\circ}
\end{array}
$$

In right $\triangle O Q P$ and $\triangle O R P$,

$$
P Q=P R
$$

(Tangents drawn from an external point are equal)

$$
\begin{aligned}
& O Q=O R \\
& O P=O P
\end{aligned}
$$

(Radius of circle)
(Common)

Therefore, by SSS criterion of congruence,

$$
\left.\begin{array}{ll}
& \triangle O Q P \cong O R P \\
\Rightarrow & \angle Q P O=\angle R P O \\
\text { and } & \angle P O Q=\angle P O R \\
\Rightarrow & \angle Q P R=2 \angle O P Q \\
\text { and } & \angle Q O R=2 \angle P O Q
\end{array}\right\}
$$

In $\triangle O P Q$,

$$
\begin{array}{rlrl}
\Rightarrow & \angle Q P O+\angle Q O P & =90^{\circ} \\
\Rightarrow & \angle Q O P=90^{\circ}-\angle Q P O \\
\Rightarrow & 2 \angle Q O P=180^{\circ}-2 \angle Q P O \text { (Multiplying both sides by 2) } \\
\Rightarrow & \angle Q O R=180^{\circ}-\angle Q P R & \text { [From Eq. (i)] }
\end{array}
$$

Hence proved.
Question 11. Prove that the parallelogram circumscribing a circle is a rhombus.

Solution Let $A B C D$ be a parallelogram circumscribing a circle. Using the property that the tangents to a circle from an exterior point are equal in length.

$\therefore \quad A M=A P$ and $B M=B N$
$C O=C N$ and $D O=D P$
On adding all equations, we get

$$
(A M+B M)+(C O+D O)=A P+B N+C N+D P\left\{\begin{aligned}
\because A B & =A M+M B, \\
B C & =B N+N C \\
C D & =C O+O D \\
A D & =A P+P D
\end{aligned}\right\}
$$

$\Rightarrow \quad A B+C D=(A P+P D)+(B N+N C)=A D+B C$
$\Rightarrow \quad 2 A B=2 B C$
$(\because A B C D$ is a parallelogram. $\therefore A B=C D$ and $B C=A D)$
$\Rightarrow \quad A B=B C$
$\therefore \quad A B=B C=C D=D A$
Hence, $A B C D$ is a rhombus.
Hence proved.

Question 12. A $\triangle A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides $A B$ and $A C$.

Solution Given, $C D=6 \mathrm{~cm}, B D=8 \mathrm{~cm}$ and radius $=4 \mathrm{~cm}$

Join $O C, O A$ and $O B$.
By using the property, tangents drawn from external point equal in length.
\therefore
and

$$
C D=C F=6 \mathrm{~cm}
$$

Let

$$
B D=B E=8 \mathrm{~cm}
$$

In $\triangle O C B$,

$$
\text { Area of triangle, } \begin{aligned}
A_{1} & =\frac{1}{2} \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times C B \times O D \\
& =\frac{1}{2} \times 14 \times 4=28 \mathrm{~cm}^{2}
\end{aligned}
$$

$\ln \triangle O C A$,
Area of triangle, $A_{2}=\frac{1}{2} \times A C \times O F=\frac{1}{2}(6+x) \times 4=12+2 x$

In $\triangle O B A$,

$$
\text { Area of triangle, } \begin{aligned}
A_{3} & =\frac{1}{2} \times A B \times O E=\frac{1}{2}(8+x) \times 4 \\
& =16+2 x
\end{aligned}
$$

Now, perimeter of triangle, $A B C=\frac{1}{2}(A B+B C+C A)$

$$
\begin{align*}
S & =\frac{1}{2}(x+6+14+8+x) \\
S & =14+x \\
\text { area of } \triangle A B C & =A_{1}+A_{2}+A_{3} \tag{i}\\
& =28+(12+2 x)+(16+2 x) \\
& =56+4 x
\end{align*}
$$

Now,

Using Heron's formula,

$$
\text { Area of } \begin{align*}
\triangle A B C & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{(14+x)(14+x-14)(14+x-x-6)(14+x-x-8)} \\
& =\sqrt{(14+x)(x)(8)(6)} \\
& =\sqrt{(14+x) x 48} \tag{ii}
\end{align*}
$$

\therefore From Eqs. (i) and (ii), we get

$$
\sqrt{(14+x) \times 48}=56+4 x
$$

On squaring both sides,

$$
\begin{array}{lc}
& (14+x) 48 x=4^{2}(14+x)^{2} \\
\Rightarrow & 3 x=14+x \\
\Rightarrow & 2 x=14 \Rightarrow x=7 \\
\therefore & \text { Length } A C=6+x=6+7=13 \mathrm{~cm} \\
& \text { Length of } A B=8+x=8+7=15 \mathrm{~cm}
\end{array}
$$

Question 13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Solution Let $A B C D$ be a quadrilateral circumscribing a circle with centre O. A circle touches the sides of a quadrilateral at points E, F, G and H.

To prove $\quad \angle A O B+\angle C O D=180^{\circ}$
and $\quad \angle A O D+\angle B O C=180^{\circ}$
Construction Join $O H, O E, O F$ and $O G$.
Proof Using the property, two tangents drawn from an external point to a circle subtend equal angles at the centre.

$$
\left.\therefore \quad \begin{array}{ll}
& \angle 1=\angle 2 \tag{i}\\
\angle 3=\angle 4 \\
\angle 5=\angle 6 \\
& \angle 7=\angle 8
\end{array}\right\}
$$

We know the sum of all angles subtended at a point O is 360°.
$\therefore \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$\Rightarrow \quad 2(\angle 2+\angle 3+\angle 6+\angle 7)=360^{\circ}$
and $\quad 2(\angle 1+\angle 8+\angle 4+\angle 5)=360^{\circ}$
$\Rightarrow \quad(\angle 2+\angle 3)+(\angle 6+\angle 7)=180^{\circ}$
and $\quad(\angle 1+\angle 8)+(\angle 4+\angle 5)=180^{\circ}$
$\Rightarrow \quad \angle A O B+\angle C O D=180^{\circ}$
and $\quad \angle A O D+\angle B O C=180^{\circ}$
[From Eq. (i)]

Hence proved.

