9 Circles

Exercise 9.1

Question 1. How many tangents can a circle have?

Solution For every point of a circle, we can draw a tangent. Therefore, infinite tangents can be drawn.

Question 2. Fill in the blanks.

- (i) A tangent to a circle intersects it in point(s).
- (ii) A line intersecting a circle in two points is called a
- (iii) A circle can have parallel tangents at the most.
- (iv) The common point of a tangent to a circle and the circle is called

Solution (i) One. A tangent line touch or intersect the circle only at one point.

- (ii) Secant. Any line intersecting the circle at two points is called a secant.
- (iii) Two. Maximum a circle an have two parallel tangents which can be drawn to the opposite side of the centre.
- (iv) Point of contact.

Question 3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre Q at a point Q so that QQ = 12 cm. Length PQ is

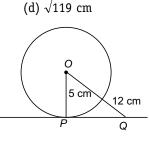
(a) 12 cm (b) 13 cm (c) 8.5 cm

Solution (d) Here, PQ is a tangent, which touches a point P of the circle. And OP = 5 cm is a radius of circle. Join OQ = 12 cm. Since, radius of circle OP is perpendicular to the tangent PQ.

:. In right Δ OPQ, By Pythagoras theorem

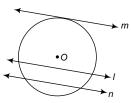
 $\begin{array}{c} OQ^2 = OP^2 + PQ^2 \\ \Rightarrow \\ PQ^2 = (5)^2 + PQ^2 \\ \Rightarrow \\ PQ^2 = 144 - 25 = 119 \end{array}$

 \Rightarrow $PQ = \sqrt{119}$ cm



Question 4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Solution Firstly draw a circle with centre *O* and draw a line *I*. Now, we draw a two parallel lines to *I*, such that one line *m* is tangent to the circle and another *n* is secant to the circle.



9 Circles

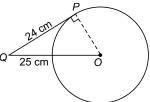
Exercise 9.2

• Choose the correct option and give justification.

Question 1. From a point *Q*, the length of the tangent to a circle is 24 cm and the distance of *Q* from the centre is 25 cm. The radius of the circle is

- (a) 7 cm (b) 12 cm
- (c) 15 cm (d) 24.5 cm

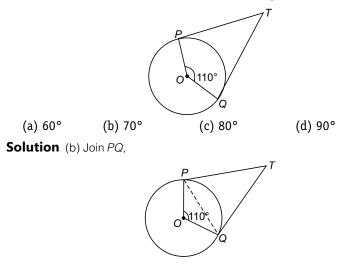
Solution (a) Given that, the length of the tangent QP = 24 cm and QO = 25 cm. Join *OP*.



We know, radius OP is perpendicular to the tangent PQ. In right ΔOPQ

	$OQ^2 = OP^2 + PQ^2$	(By Pythagoras theorem)
\Rightarrow	$25^2 = OP^2 + 24^2$	
\Rightarrow	$OP^2 = 625 - 576 = 49$	
\Rightarrow	<i>OP</i> = 7 cm	

Question 2. In figure, if *TP* and *TQ* are the two tangents to a circle with centre 0 so that $\angle POQ = 110^\circ$, then $\angle PTQ$ is equal to



 $\ln \Delta OPQ$

	OP = OQ = radius of circle
\Rightarrow	$\angle OPQ = \angle OQP$
	(Equal sides have corresponding equal angles)
\Rightarrow	$\angle OPQ = \angle OQP = \frac{180^\circ - 110^\circ}{2} = 35^\circ$
	2

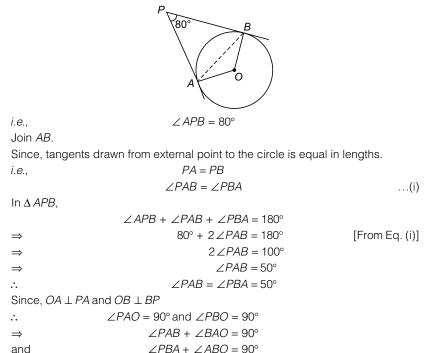
Since, $OP \perp PT$ and $OQ \perp TQ$ (Radius of circle is perpendicular to the tangent)

$$\begin{array}{cccc} & \angle OPT = 90^{\circ} \text{ and } \angle OQT = 90^{\circ} \\ \Rightarrow & \angle OPQ + \angle QPT = 90^{\circ} \\ \text{and} & \angle OQP + \angle PQT = 90^{\circ} \\ \Rightarrow & 35^{\circ} + \angle QPT = 90^{\circ} \\ \text{and} & 35^{\circ} + \angle PQT = 90^{\circ} \\ \text{and} & 35^{\circ} + \angle PQT = 90^{\circ} \\ \Rightarrow \angle QPT = 55^{\circ} \text{ and } \angle PQT = 55^{\circ} \\ \ln \Delta PTQ, & \\ & \angle QPT + \angle PQT + \angle PTQ = 180^{\circ} \\ \Rightarrow & 55^{\circ} + 55^{\circ} + \angle PTQ = 180^{\circ} \\ \Rightarrow & \angle PTQ = 180^{\circ} - (55^{\circ} + 55^{\circ}) = 70^{\circ} \end{array}$$

Question 3. If tangents *PA* and *PB* from a point *P* to a circle with centre *O* are inclined to each other at angle of 80°, then $\angle POA$ is equal to

(a) 50)° (b) 60° ((c) 70°	(d)	80°
(4) 50					

Solution (a) *PA* and *PB* are two tangents drawn from a point *P*.



⇒
$$50^{\circ} + \angle BAO = 90^{\circ}$$

and $50^{\circ} + \angle ABO = 90^{\circ}$
⇒ $\angle BAO = 40^{\circ}$ and $\angle ABO = 40^{\circ}$

Now, in $\triangle AOB$,

$$\Rightarrow \qquad \qquad \angle OAB + \angle ABO + \angle AOB = 180^{\circ}$$

$$\Rightarrow \qquad \qquad 40^{\circ} + 40^{\circ} + \angle AOB = 180^{\circ}$$

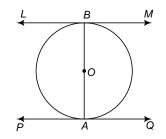
$$\Rightarrow \qquad \angle AOB = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Since, angle bisector divides an angle into two equal parts.

$$\therefore \qquad \angle PAO = \frac{1}{2} \angle AOB = \frac{1}{2} \times 100^\circ = 50^\circ$$

Question 4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution Let *AB* be a diameter of a given circle and let *LM* and *PQ* be the tangent lines drawn to the circle at points A and B, respectively. Since, the tangent at a point to a circle is perpendicular to the radius through the point.



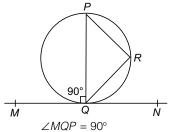
 $\therefore AB \perp PQ$ and $AB \perp LM$ \Rightarrow

 $\angle PAB = 90^{\circ}$ and $\angle ABM = 90^{\circ}$ $\angle PAB = \angle ABM$ \Rightarrow PQ || LM \Rightarrow

Hence proved.

Question 5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Solution Tangent *MN* is drawn from point *Q* of the circle. A perpendicular line PQ is drawn to the MQN line.



i.e..

Take any point R on the circle.

Mathematics-X

Join PR and QR

By using alternate segment theorem

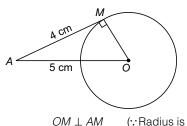
$$\angle MQP = \angle PRQ = 90^{\circ}$$

We know, any chord PQ subtends an angle 90° only when chord PQ is a diameter of the circle.

Hence, perpendicular PQ is always passes through the centre.

Question 6. The length of a tangent from a point *A* at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Solution Given, OP = 5 cm and AM = 4 cm



(: Radius is perpendicular to AM)

In right ΔOMA ,

•.•

 $OP^2 = OM^2 + MA^2$ $5^2 = OM^2 + 4^2$ \Rightarrow $OM^2 = 25 - 16 = 9$ \Rightarrow OM = 3 cm \rightarrow

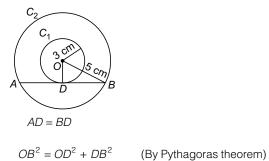
(By Pythagoras theorem)

Hence, radius of the circle is 3 cm.

Question 7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Solution Here, we draw two circles C_1 and C_2 of radii $r_1 = 3$ cm and $r_2 = 5$ cm Now, we draw a chord AB such that it touches the circle C_1 at point D. The centre of concentric circle is O.

Now, we draw a perpendicular bisector from O to AB which meets AB at D.



i.e., In right $\triangle OBD$,

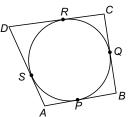
$$\Rightarrow 5^{2} = 3^{2} + DB^{2}$$

$$\Rightarrow DB^{2} = 25 - 9 = 16$$

$$\Rightarrow DB = 4 \text{ cm}$$

$$\therefore \text{ Length of chord } = AB = 2 \text{ } AD = 2 \times 4 = 8 \text{ cm}$$

Question 8. A quadrilateral *ABCD* is drawn to circumscribe a circle (see figure). Prove that AB + CD = AD + BC.



Solution Using theorem, the lengths of tangents drawn from an external point to a circle are equal.

Suppose, A is an external point, then

$$AP = AS$$
 ...(i)

Suppose, *B* is an external point, then BP = BQ ...(ii)

Suppose, C is an external point, then

CQ = RC ...(iii)

Suppose, *D* is an external point, then

$$SD = RD$$
 ...(iv)

On adding Eqs. (i), (ii), (iii) and (iv), we get

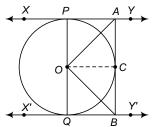
$$(AP + BP) + (RC + RD) = (AS + BQ) + (CQ + SD)$$

$$\Rightarrow \qquad AB + CD = (AS + SD) + (BQ + CQ)$$

$$\Rightarrow \qquad AB + CD = AD + BC$$

Hence proved.

Question 9. In figure, *XY* and *X'Y'* are two parallel tangents to a circle with centre *O* and another tangent *AB* with point of contact *C* intersecting *XY* at *A* and *X'Y'* at *B*. Prove that $\angle AOB = 90^{\circ}$.

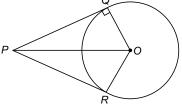


Solution Since, tangents drawn from an external point to a circle are equal. AP = AC*.*.. Thus, in $\triangle APO$ and $\triangle ACO$, AP = ACAO = AO(Common) OP = OC(Radius of circle) .: By SSS criterion of congruence, we have $\Delta APO \simeq \Delta ACO$ $\angle PAO = \angle OAC$ \Rightarrow $\angle PAC = 2 \angle CAO$ \Rightarrow Similarly, we can prove that $\angle CBO = \angle OBQ$ $\angle CBQ = 2 \angle CBQ$ \Rightarrow Since, XY || X'Y' $\angle PAC + \angle OBC = 180^{\circ}$ *.*.. (Sum of interior angles on the same side of transversal is 180°) $2 \angle CAO + 2 \angle CBO = 180^{\circ}$ *.*.. ...(i) $\angle CAO + \angle CBO = 90^{\circ}$ \Rightarrow $\ln \Delta AOB$, $\angle CAO + \angle CBO + \angle AOB = 180^{\circ}$ \Rightarrow $\angle CAO + \angle CBO = 180^{\circ} - \angle AOB$...(ii) \Rightarrow . From Eqs. (i) and (ii), we get $180^\circ - \angle AOB = 90^\circ$ $\angle AOB = 90^{\circ}$ \Rightarrow

Question 10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

SolutionLet PQ and PR be two tangentsdrawn from an external point P to a circlewith centre O.We have to prove that,

 $\angle QOR = 180^{\circ} - \angle QPR$ or $\angle QOR + \angle QPR = 180^{\circ}$ In right $\triangle OQP$ and $\triangle ORP$,



PQ = PR

OQ = OR(Radius of circle)OP = OP(Common)

Circles

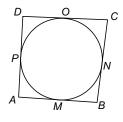
Therefore, by SSS criterion of congruence,

 $\Delta OQP \cong ORP$ $\angle QPO = \angle RPO$ \Rightarrow $\angle POQ = \angle POR$ and $\angle QPR = 2 \angle OPQ$] \Rightarrow ...(i) $\angle QOR = 2 \angle POQ$ and $\ln \Delta OPQ$, $\angle QPO + \angle QOP = 90^{\circ}$ $\angle QOP = 90^{\circ} - \angle QPO$ \Rightarrow $2 \angle QOP = 180^{\circ} - 2 \angle QPO$ (Multiplying both sides by 2) \Rightarrow $\angle QOR = 180^{\circ} - \angle QPR$ [From Eq. (i)] \Rightarrow $\angle QOR + \angle QPR = 180^{\circ}$ \Rightarrow

Hence proved.

Question 11. Prove that the parallelogram circumscribing a circle is a rhombus.

Solution Let *ABCD* be a parallelogram circumscribing a circle. Using the property that the tangents to a circle from an exterior point are equal in length.



:..

AM = AP and BM = BNCO = CN and DO = DP

On adding all equations, we get

AB = AM + MBBC = BN + NC,CD = CO + OD,AD = AP + PD(AM + BM) + (CO + DO) = AP + BN + CN + DP

$$\Rightarrow AB + CD = (AP + PD) + (BN + NC) = AD + BC$$

$$\Rightarrow 2AB = 2BC$$

(:: ABCD is a parallelogram. :: AB = CD and BC = AD)

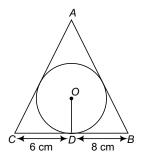
$$\Rightarrow AB = BC$$

:: ABCD is a rhombus.
Hence, ABCD is a rhombus.
Hence proved

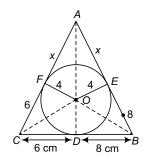
Hence proved.

Mathematics-X

Question 12. A \triangle *ABC* is drawn to circumscribe a circle of radius 4 cm such that the segments *BD* and *DC* into which *BC* is divided by the point of contact *D* are of lengths 8 cm and 6 cm respectively (see figure). Find the sides *AB* and *AC*.



Solution Given, CD = 6 cm, BD = 8 cm and radius = 4 cm



Join OC, OA and OB.

By using the property, tangents drawn from external point equal in length.

<u>.</u>	CD = CF = 6 cm
and	BD = BE = 8 cm
Let	$AF = AE = x \mathrm{cm}$

In $\triangle OCB$,

Area of triangle,
$$A_1 = \frac{1}{2}$$
 Base × Height
= $\frac{1}{2} \times CB \times OD$
= $\frac{1}{2} \times 14 \times 4 = 28$ cm²

 $\ln\Delta \textit{OCA},$

Area of triangle,
$$A_2 = \frac{1}{2} \times AC \times OF = \frac{1}{2} (6 + x) \times 4 = 12 + 2x$$

Circles

 $\ln \Delta \textit{OBA}\!,$

Area of triangle,
$$A_3 = \frac{1}{2} \times AB \times OE = \frac{1}{2} (8 + x) \times 4$$

 $= 16 + 2x$
Now, perimeter of triangle, $ABC = \frac{1}{2} (AB + BC + CA)$
 $S = \frac{1}{2} (x + 6 + 14 + 8 + x)$
 $S = 14 + x$
Now, area of $\triangle ABC = A_1 + A_2 + A_3$
 $= 28 + (12 + 2x) + (16 + 2x)$
 $= 56 + 4x$ (i)

Using Heron's formula,

Area of
$$\triangle ABC = \sqrt{s (s - a) (s - b) (s - c)}$$

= $\sqrt{(14 + x) (14 + x - 14) (14 + x - x - 6) (14 + x - x - 8)}$
= $\sqrt{(14 + x) (x) (8) (6)}$
= $\sqrt{(14 + x) x 48}$...(ii)

: From Eqs. (i) and (ii), we get

$$\sqrt{(14 + x) \times 48} = 56 + 4x$$

On squaring both sides,

$$(14 + x) 48 x = 4^{2} (14 + x)^{2}$$

$$\Rightarrow \qquad 3x = 14 + x$$

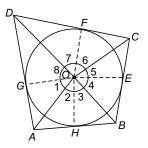
$$\Rightarrow \qquad 2x = 14 \Rightarrow x = 7$$

$$\therefore \qquad \text{Length } AC = 6 + x = 6 + 7 = 13 \text{ cm}$$

$$\text{Length of } AB = 8 + x = 8 + 7 = 15 \text{ cm}$$

Question 13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution Let *ABCD* be a quadrilateral circumscribing a circle with centre *O*. A circle touches the sides of a quadrilateral at points *E*, *F*, *G* and *H*.



Mathematics-X

To prove	$\angle AOB + \angle COD = 180^{\circ}$		
and	$\angle AOD + \angle BOC = 180^{\circ}$		

Construction Join *OH*, *OE*, *OF* and *OG*.

:..

Proof Using the property, two tangents drawn from an external point to a circle subtend equal angles at the centre.

	$\angle 1 = \angle 2$
	$\angle 3 = \angle 4$
(1)	$\angle 5 = \angle 6$
J	$\angle 7 = \angle 8$

We know the sum of all angles subtended at a point *O* is 360°. $\therefore \angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$

∴∠1+∠2+∠3•	$+ \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$	
\Rightarrow	2 (∠2 + ∠3 + ∠6 + ∠7) = 360°	
and	2 (∠1 + ∠8 + ∠4 + ∠5) = 360°	[From Eq. (i)]
\Rightarrow	$(\angle 2 + \angle 3) + (\angle 6 + \angle 7) = 180^{\circ}$	
and	$(\angle 1 + \angle 8) + (\angle 4 + \angle 5) = 180^{\circ}$	
\Rightarrow	$\angle AOB + \angle COD = 180^{\circ}$	
and	$\angle AOD + \angle BOC = 180^{\circ}$	
Hence proved.		