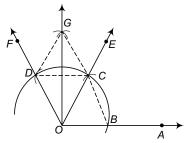
12 **Constructions**

Exercise 12.1

Question 1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Solution Steps of construction



- 1. Taking *O* as centre and some radius, draw an arc of a circle which intersects *OA*, say at a point *B*.
- 2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
- 3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at D.
- 4. Draw the ray *OE* passing through *C*. Then, $\angle EOA = 60^{\circ}$
- 5. Draw the ray of passing through *D*. Then, $\angle FOE = 60^{\circ}$.
- 6. Next, taking C and D as centres and with the radius more than $\frac{1}{2}CD$, draw

arcs to intersect each other, say at G.

7. Draw the ray OG. This ray OG is the bisector of the $\angle FOE i.e.$,

$$\angle FOG = \angle EOG = \frac{1}{2} \angle FOE = \frac{1}{2} (60^{\circ}) = 30^{\circ}$$
$$\angle GOA = \angle GOE + \angle EOA$$
$$= 30^{\circ} + 60^{\circ} = 90^{\circ}$$

Justification

Thus,

(1) I · DO

(i)	Join <i>BC</i> .			
	Then,	OC = OB = BC	(By construction)	
	$\therefore \Delta COB$ is an equilateral triangle.			
	.:	$\angle COB = 60^{\circ}$		
	.:.	$\angle EOA = 60^{\circ}$		
(ii)	(ii) Join CD.			
	Then,	OD = OC = CD	(By construction)	
	$\therefore \Delta$ <i>DOC</i> is an equilateral triangle.			
	.:.	$\angle DOC = 60^{\circ}$		
	.:.	$\angle FOE = 60^{\circ}$		

(iii) Join CG and DG.

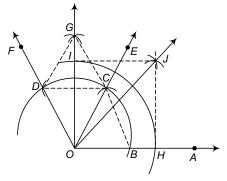
In Δ ODG and Δ OCG,

	OD = OC	(Radii of the same arc)
	DG = CG	(Arcs of equal radii)
	OG = OG	(Common)
.:.	$\Delta \ ODG \cong \Delta \ OCG$	(SSS rule)
.:.	$\angle DOG = \angle COG$	(CPCT)
÷	$\angle FOG = \angle EOG = \frac{1}{2} \angle FC$	DE
$=\frac{1}{2}(60^{\circ})=30^{\circ}$		
Thus,	$\angle GOA = \angle GOE + \angle EOA = 30^{\circ} +$	$60^\circ = 90^\circ$

Question 2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Solution Steps of construction

- 1. Taking *O* as centre and some radius, draw an arc of a circle which intersects *OA*, say at a point *B*.
- 2. Taking *B* as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point *C*.



- 3. Taking *C* as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at *D*.
- 4. Draw the ray *OE* passing through *C*. Then, $\angle EOA = 60^{\circ}$.
- 5. Draw the ray *OF* passing through *D*. Then, $\angle FOE = 60^{\circ}$.
- 6. Next, taking C and D as centres and with radius more than $\frac{1}{2}CD$, draw

arcs to intersect each other, say at G.

7. Draw the ray OG. This ray OG is the bisector of the $\angle FOE$,

i.e.,
$$\angle FOG = \angle EOG = \frac{1}{2} \angle FOE = \frac{1}{2} (60^\circ) = 30^\circ$$
.
Thus, $\angle GOA = \angle GOE + \angle EOA$
 $= 30^\circ + 60^\circ = 90^\circ$

Mathematics-IX

- 8. Now taking *O* as centre and any radius, draw an arc to intersect the rays *OA* and *OG*, say at *H* and *I*, respectively.
- 9. Next, taking H and I as centres and with the radius more than $\frac{1}{2}HI$, draw

arcs to intersect each other, say at J.

10. Draw the ray OJ. This ray OJ is the required bisector of the $\angle GOA$.

Thus,

$$\angle GOJ = \angle AOJ = \frac{1}{2} \angle GOA$$
$$= \frac{1}{2} (90^{\circ}) = 45^{\circ}$$

Justification

(i) Join BC. (By construction) Then, OC = OB = BC $\therefore \Delta COB$ is an equilateral triangle. *:*.. $\angle COB = 60^{\circ}$ $\angle EOA = 60^{\circ}$ *:*.. (ii) Join CD. Then, OD = OC = CD(By construction) $\therefore \Delta$ DOC is an equilateral triangle. $\angle DOC = 60^{\circ}$ $\angle FOE = 60^{\circ}$ *.*.. (iii) Join CG and DG. In \triangle ODG and \triangle OCG, OD = OC(Radii of the same arc) DG = CG(Arcs of equal radii) OG = OG(Common) $\Delta ODG \cong \Delta OCG$ (SSS rule) *.*.. $\angle DOG = \angle COG$ (CPCT) *:*.. $\angle FOG = \angle EOG = \frac{1}{2} \angle FOE$ *.*.. $=\frac{1}{2}(60^{\circ})=30^{\circ}$ $\angle GOA = \angle GOE + \angle EOA$ Thus, $= 30^{\circ} + 60^{\circ} = 90^{\circ}$ (iv) Join HJ and IJ. In ΔOIJ and ΔOHJ , OI = OH(Radii of the same arc) IJ = HJ(Arcs of equal radii) OJ = OJ(Common) $\Delta OIJ \cong \Delta OHJ$ (SSS rule) *:*..

 $\angle IOJ = \angle HOJ$ $\angle AOJ = \angle GOJ = \frac{1}{2} \angle GOA$ $= \frac{1}{2} (90^{\circ}) = 45^{\circ}$

Question 3. Construct the angles of the following measurements

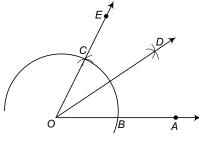
(i) 30° (ii)
$$22\frac{1}{2}^{\circ}$$
 (iii) 15°

Solution (i) Steps of construction

:..

:..

- 1. Taking *O* as centre and some radius, draw an arc of a circle which intersects *OA*, say at a point *B*.
- 2. Taking *B* as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point *C*.
- 3. Draw the ray *OE* passing through *C*. Then, $\angle EOA = 60^{\circ}$.



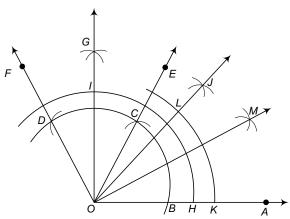
4. Taking *B* and *C* as centres and with the radius more than $\frac{1}{2}BC$, draw arcs

to intersect each other, say at D.

5. Draw the ray OD, this ray OD is the bisector of the $\angle EOA$, *i.e.*,

$$\angle EOD = \angle AOD = \frac{1}{2} \angle EOA = \frac{1}{2} (60^\circ) = 30^\circ$$

(ii) Steps of construction



1. Taking *O* as centre and some radius, draw an arc of a circle which intersects *OA*, say at a point *B*.

Mathematics-IX

- 2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
- 3. Taking C as centre and with the same radius as before, drawn an arc intersecting the arc drawn in step 1, say at D.
- 4. Draw the ray OE passing through C. Then, $\angle EOA = 60^{\circ}$.
- 5. Draw the ray OF passing through D. Then, $\angle FOE = 60^{\circ}$.
- 6. Next, taking C and D as centres and with radius more than $\frac{1}{2}CD$, draw arcs to intersect each other, say at G.
- 7. Draw the ray OG. This ray OG is the bisector of the $\angle FOE$,

Le.,
$$\angle FOG = \angle EOG = \frac{1}{2} \angle FOE$$

 $= \frac{1}{2} (60^{\circ}) = 30^{\circ}$
Thus, $\angle GOA = \angle GOE + \angle EOA$
 $= 30^{\circ} + 60^{\circ} = 90^{\circ}$

8. Now, taking O as centre and any radius, draw an arc to intersect the rays OA and OG, say at H and I, respectively.

- 9. Next, taking H and I as centres and with the radius more than $\frac{1}{2}HI$, draw arcs to intersect each other, say at J.
- 10. Draw the ray OJ. This ray OJ is the bisector of the $\angle GOA$.

i.e.,
$$\angle GOJ = \angle AOJ = \frac{1}{2} \angle GOA$$

 $= \frac{1}{2} (90^{\circ}) = 45^{\circ}$

- 11. Now, taking O as centre and any radius, drawn an arc to intersect the rays OA and OJ, say at K and L, respectively.
- 12. Next, taking K and L as centres and with the radius more than $\frac{1}{2}KL$, draw

arcs to intersect each other, say at H.

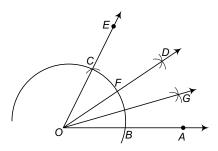
13. Draw the ray OM. This ray OM is the bisector of the $\angle AOJ$, *i.e.*, $\angle JOM = \angle AOM$

$$=\frac{1}{2} \angle AOJ = \frac{1}{2} (45^{\circ}) = 22\frac{1}{2}^{\circ}$$

(iii) Steps of construction

- 1. Taking O as centre and some radius, draw an arc of a circle which intersects OA, say at a point B.
- 2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
- 3. Draw the ray OE passing through C. Then, $\angle EOA = 60^{\circ}$.

Mathematics-IX



- 4. Now, taking *B* and *C* as centres and with the radius more than $\frac{1}{2}BC$, draw arcs to intersect each other, say at *D*.
- 5. Draw the ray *OD* intersecting the arc drawn in step 1 at *F*. This ray *OD* is the bisector of the $\angle EOA$, *i.e.*,

$$\angle EOD = \angle AOD = \frac{1}{2} \angle EOA = \frac{1}{2} (60^{\circ}) = 30^{\circ}$$

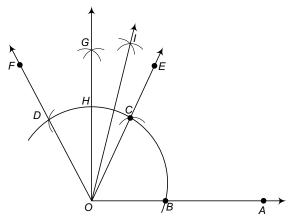
- 6. Now, taking *B* and *F* as centres and with the radius more than $\frac{1}{2}BF$, draw arcs to intersect each other, say at *G*.
- 7. Draw the ray OG. This ray OG is the bisector of the $\angle AOD$,

i.e.,
$$\angle DOG = \angle AOG = \frac{1}{2} \angle AOD = \frac{1}{2} (30^\circ) = 15^\circ$$

Question 4. Construct the following angles and verify by measuring them by a protractor

(i) 75° (ii) 105° (iii) 135°

Solution (i) Steps of construction



Mathematics-IX

- 1. Taking O as centre and some radius, draw an arc of a circle which intersects OA, say at a point B.
- 2. Taking B as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point C.
- 3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at D.
- 4. Join the ray *OE* passing through *C*. Then, $\angle EOA = 60^{\circ}$.
- 5. Draw the ray of passing through D. Then, $\angle FOE = 60^{\circ}$.
- 6. Next, taking C and D as centres and with the radius more than $\frac{1}{2}CD$, draw

arcs to intersect each other, say at G.

7. Draw the ray OG intersecting the arc of step 1 at H. This ray OG is the bisector of the $\angle FOE$. *i.e.* $\angle FOG = \angle EOG$

$$=\frac{1}{2} \angle FOE = \frac{1}{2}(60^{\circ}) = 30^{\circ}$$

8. Next, taking C and H as centres and with the radius more than $\frac{1}{2}CH$, draw

arcs to intersect each other, say at I.

9. Draw the ray OI. This ray OI is the bisector of the $\angle GOE$,

i.e.,
$$\angle GOI = \angle EOI = \frac{1}{2} \angle GOE = \frac{1}{2} (30^{\circ}) = 15^{\circ}$$

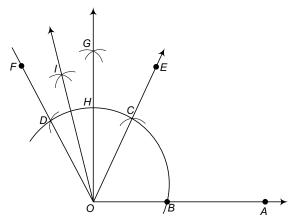
Thus, $\angle IOA = \angle IOE + \angle EOA$

i.e..

$$= 15^{\circ} + 60^{\circ} = 75^{\circ}$$

On measuring the $\angle IOA$ by protractor, we find that $\angle IOA = 15^{\circ}$ Thus, the construction is verified.

(ii) Steps of construction



1. Taking O as centre and some radius, draw an arc of a circle which intersects OA, say at a point B.

Mathematics-IX

- 2. Taking *B* as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point *C*.
- 3. Taking C as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at a point D.
- 4. Draw the ray *OE* passing through *C*. Then, $\angle EOA = 60^{\circ}$.
- 5. Draw the ray *OF* passing through *D*. Then, $\angle FOE = 60^{\circ}$.
- 6. Next, taking C and D as centres and with the radius more than $\frac{1}{2}CD$, draw

arcs to intersect each other, say at G.

7. Draw the ray *OG* intersecting the arc drawn in step 1 at *H*. This ray *OG* is the bisector of the ∠*FOE*, *i.e.*,

$$\angle FOG = \angle EOG = \frac{1}{2} \angle FOE$$
$$= \frac{1}{2} (60^{\circ}) = 30^{\circ}.$$
$$\angle GOA = \angle GOE + \angle EOA$$
$$= 30^{\circ} + 60^{\circ} = 90^{\circ}$$

Thus,

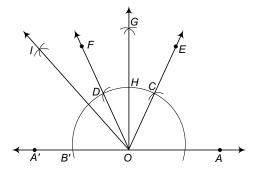
8. Next, taking *H* and *D* as centres and with the radius more than $\frac{1}{2}HD$, draw

arcs to intersect each other, say at I.

9. Draw the ray OI. This ray OI is the bisector of the $\angle FOG$, *i.e.*, $\angle FOI = \angle GOI = \frac{1}{2} \angle FOG = \frac{1}{2} (30^{\circ}) = 15^{\circ}$

Thus, $\angle IOA = \angle IOG + \angle GOA = 15^{\circ} + 90^{\circ} = 105^{\circ}$. On measuring the $\angle IOA$ by protractor, we find that $\angle FOA = 105^{\circ}$. Thus, the construction is verified.

(iii) Steps of construction



- 1. Produce AO to A' to form ray OA'.
- 2. Taking *O* as centre and some radius, draw an arc of a circle which intersects *OA* at a point *B* and *OA*' at a point *B*'.
- 3. Taking *B* as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at a point *C*.

Mathematics-IX

- 4. Taking *C* as centre and with the same radius as before, draw an arc intersecting the arc drawn in step 1, say at *D*.
- 5. Draw the ray *OE* passing through *C*, then $\angle EOA = 60^{\circ}$.
- 6. Draw the ray OF passing through D, then $\angle FOE = 60^{\circ}$.
- 7. Next, taking C and D as centres and with the radius more than $\frac{1}{2}CD$, draw

arcs to intersect each other, say at G.

8. Draw the ray *OG* intersecting the arc drawn in step 1 at *H*. This ray *OG* is the bisector of the ∠*FOE i.e.*,

$$\angle FOG = \angle EOG = \frac{1}{2} \angle FOE = \frac{1}{2} (60^\circ) = 30^\circ$$
$$\angle GOA = \angle GOE + \angle FOA$$

Thus,

.•.

$$= 30^{\circ} + 60^{\circ} = 90^{\circ}$$

 $\angle B'OH = 90^{\circ}$

9. Next, taking B' and H as centres and with the radius more than $\frac{1}{2}B'H$,

drawn arcs to intersect each other, say at I.

10. Draw the ray OI. This ray OI is the bisector of the $\angle B'OG$ i.e., $\angle B'OI = \angle GOI = \frac{1}{2} \angle B'OG = \frac{1}{2} (90^{\circ}) = 45^{\circ}$

Thus,

 $= 45^{\circ} + 90^{\circ} = 135^{\circ}$

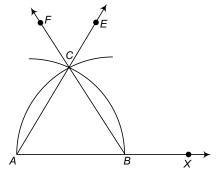
On measuring the $\angle IOA$ by protractor, we find that $\angle IOA = 135^{\circ}$.

 $\angle IOA = \angle IOG + \angle GOA$

Thus, the construction is verified.

Question 5. Construct an equilateral triangle, given its side and justify the construction.

Solution Steps of construction



- 1. Take a ray AX with initial point A. From AX, cut off AB = 4 cm.
- 2. Taking *A* as centre and radius (= 4 cm), draw an arc of a circle, which intersects *AX*, say at a point *B*.

Mathematics-IX

- 3. Taking *B* as centre and with the same radius as before, draw an arc intersecting the previously drawn arc, say at a point *C*.
- 4. Draw the ray AE passing through C.
- 5. Next, taking *B* as centre and radius (= 4 cm), draw an arc of a circle, which intersects *AX*, say at a point *A*.
- 6. Taking *A* as centre and with the same radius as in step 5, draw an arc intersecting the previously drawn arc, say at a point *C*.
- 7. Draw the ray BF passing through C.

Then, ΔABC is the required triangle with gives side 4 cm. Justification

AB = BC	(By construction)
AB = AC	(By construction)
AB = BC = CA	
rianala	

 $\therefore \Delta$ ABC is an equilateral triangle.

... The construction is justified.

...

Mathematics-IX

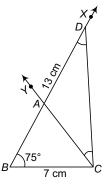
12 **Constructions**

Exercise 12.2

Question 1. Construct a $\triangle ABC$ in which BC = 7 cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm.

Solution Given that, in $\triangle ABC$, BC = 7 cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm Steps of construction

1. Draw the base BC = 7 cm.



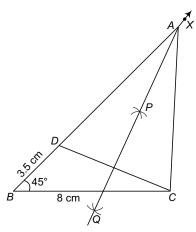
- 2. At the point *B* make an $\angle XBC = 75^{\circ}$.
- 3. Cut a line segment BD equal to AB + AC = 13 cm from the ray BX.
- 4. Join DC.
- 5. Make an $\angle DCY = \angle BDC$.
- 6. Let CY intersect BX at A.

Then, ABC is the required triangle.

Question 2. Construct a $\triangle ABC$ in which BC = 8 cm, $\angle B = 45^{\circ}$ and AB - AC = 35 cm.

Solution Given that, in \triangle *ABC*,

BC = 8 cm, $\angle B = 45^{\circ}$ and AB - AC = 3.5 cm



Steps of construction

- 1. Draw the base BC = 8 cm
- 2. At the point *B* make an $\angle XBC = 45^{\circ}$.
- 3. Cut the line segment *BD* equal to AB AC = 3.5 cm from the ray *BX*.
- 4. Join *DC*.
- 5. Draw the perpendicular bisector, say PQ of DC.
- 6. Let it intersect BX at a point A.
- 7. Join AC.

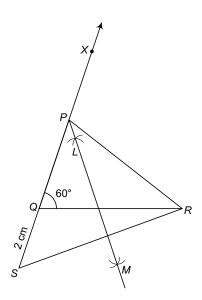
Question 3. Construct a $\triangle ABC$ in which QR = 6 cm, $\angle Q = 60^{\circ}$ and PR - PQ = 2 cm.

Solution Given that, in \triangle ABC, QR = 6 cm, $\angle Q = 60^{\circ}$ and PR - PQ = 2 cm

Steps of construction

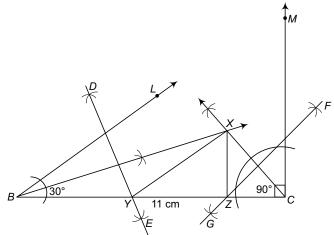
- 1. Draw the base QR = 6 cm.
- 2. At the point Q make an $\angle XQR = 60^{\circ}$.
- 3. Cut line segment QS = PR PQ (= 2 cm) from the line QX extended on opposite side of line segment QR.
- 4. Join SR.
- 5. Draw the perpendicular bisector LM of SR.
- 6. Let *LM* intersect *QX* at *P*.
- 7. Join PR.

Mathematics-IX



Question 4. Construct a $\triangle XYZ$ in which $\angle Y = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Solution Given that, in $\triangle XYZ \ \angle Y = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.



Steps of construction

- 1. Draw a line segment BC = XY + YZ + ZX = 11 cm
- 2. Make $\angle LBC = \angle Y = 30^{\circ}$ and $\angle MCB = \angle Z = 90^{\circ}$.
- 3. Bisect $\angle LBC$ and $\angle MCB$. Let these bisectors meet at a point X.

Mathematics-IX

- 4. Draw perpendicular bisectors *DE* of *XB* and *FG* of *XC*.
- 5. Let *DE* intersect *BC* at *Y* and *FC* intersect *BC* at *Z*.
- 6. Join XY and XZ.

Then, XYZ is the required triangle.

Question 5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.

Solution Given that, in $\triangle ABC$, base BC = 12 cm, $\angle B = 90^{\circ}$ and AB + BC = 18 cm.

Steps of construction

- 1. Draw the base BC = 12 cm.
- 2. At the point *B*, make an $\angle XBC = 90^{\circ}$.
- 3. Cut a line segment BD = AB + AC = 18 cm from the ray BX.
- 4. Join *DC*.
- 5. Draw the perpendicular bisector PQ of CD to intersect BD at a point A.
- 6. Join AC.

Then, ABC is the required right triangle.

