9 Quadrilaterals

Exercise 9.1

Question 1. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Solution Given, the ratio of the angles of quadrilateral are $3: 5: 9: 13$.
Let the angles of the quadrilateral are $3 x, 5 x, 9 x$ and $13 x$.
We know that, sum of angles of a quadrilateral $=360^{\circ}$

$$
\begin{aligned}
\therefore & 3 x+5 x+9 x+13 x & =360^{\circ} \\
\Rightarrow & 30 x & =360^{\circ} \Rightarrow x=\frac{360^{\circ}}{30}=12^{\circ}
\end{aligned}
$$

\therefore Angles of the quadrilateral are $3 x=3 \times 12=36^{\circ}$

$$
5 x=5 \times 12=60^{\circ}
$$

$$
9 x=9 \times 12=108^{\circ}
$$

and

$$
13 x=13 \times 12=156^{\circ}
$$

Question 2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution Let given parallelogram is $A B C D$ whose diagonals $A C$ and $B D$ are equal. i.e., $A C=B D$.
Now, we have to prove that $A B C D$ is a rectangle.

Proof. In $\triangle A B C$ and $\triangle D C B$, we have

	$A B$	$=C D$
$B C$	$=C B$	(Opposite sides of parallelogram)
and	$A C=B D$	(Common in both triangles)
\therefore	$\triangle A B C \cong \triangle D C B$	(Given)
\therefore	$\angle A B C$	$=\angle D C B$

(Corresponding Part of Congruent Triangle)
But $D C \| A B$ and transversal $C B$ intersect them.
$\therefore \quad \angle A B C+\angle D C B=180^{\circ}$
(\because Both are interior angles on the same side of the transversal)
$\Rightarrow \quad \angle A B C+\angle A B C=180^{\circ}$
[From Eq. (i)]
$\Rightarrow \quad 2 \angle A B C=180^{\circ}$
$\Rightarrow \quad \angle A B C=90^{\circ}=\angle D C B$
Thus, $A B C D$ is a parallelogram and one of angles is 90°.
Hence, $A B C D$ is a rectangle.
Hence proved.

Question 3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution Given, a quadrilateral $A B C D$ whose diagonals $A C$ and $B D$ bisect each other at right angles.

i.e.,

$$
\begin{aligned}
O A & =O C \text { and } O B=O D \\
\angle A O D & =\angle A O B=\angle C O D=\angle B O C=90^{\circ}
\end{aligned}
$$

To prove, $A B C D$ is a rhombus.
Proof. In $\triangle O A B$ and $\triangle O D C$, we have

$$
\begin{align*}
& O A & =O C \text { and } O B=O D & \text { (Given) } \\
& & \angle A O B & =\angle C O D
\end{align*} \quad \text { (Vertically opposite angles) }
$$

Again, in $\triangle O A D$ and $\triangle O B C$, we have

$$
\begin{equation*}
O A=O C \text { and } O D=O B \tag{Given}
\end{equation*}
$$

and

$$
\angle A O D=\angle B O C
$$

(Vertically opposite angle)
\therefore

$$
\triangle O A D \cong \triangle O C B
$$

(By SAS rule)
\therefore

$$
A D=B C
$$

(Corresponding part of congruent triangles)
Similarly, we can prove that

$$
\begin{align*}
& A B=A D \\
& C D=B C \tag{iii}
\end{align*}
$$

Hence, from Eqs. (i), (ii) and (iii), we get

$$
A B=B C=A D=C D
$$

Hence, $A B C D$ is a rhombus.
Hence proved.
Question 4. Show that the diagonals of a square are equal and bisect each other at right angles.
Solution Given A square $A B C D$ whose diagonals $A C$ and $B D$ intersect at O.

To prove Diagonals are equal and bisect each other at right angles.
i.e.,

$$
A C=B D, O D=O B, O A=O C \text { and } A C \perp B D
$$

Proof In $\triangle A B C$ and $\triangle B A D$, we have

$A B$	$=B A$	(Common)
$B C$	$=A D$	(Sides of a square)
$\angle A B C$	$=\angle B A D=90^{\circ}$	
\therefore	$\triangle A B C$	$\cong \triangle B A D$
Hence,	$A C$	$=B D$

(Corresponding Parts of Congruent Triangle)
In $\triangle O A B$ and $\triangle O C D$

$$
\begin{aligned}
A B= & D C \quad \quad \text { (Side of square) } \\
\angle O A B= & \angle D C O \quad \\
& (\because A B \| C D \text { and transversal } A C \text { intersect })
\end{aligned}
$$

and
$\angle O B A=\angle B D C$
$(\because A B \| C D$ and transversal $B D$ intersect $)$
$\therefore \quad \triangle O A B \cong \triangle O C D$
$\therefore \quad O A=O C$ and $O B=O D$
(Corresponding Parts of Congruent Triangle)
Now, in $\triangle A O B$ and $\triangle A O D$, we have

$O B$	$=O D$	(Prove in above) $A B$ $=A D$ (Sides of a square)
\therefore	$A O$	$=O A$
(Common)		
\therefore	$\triangle A O B$	$\cong \triangle A O D$
But	$\angle A O B$	$=\angle A O D$

Thus, $A O \perp B D$ i.e., $A C \perp B D$.
Hence, $\quad A C=B D, O A=O C, O B=O D$ and $A C \perp B D$
Hence proved.
Question 5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution Given A quadrilateral $A B C D$ in which $A C=B D$ and $A C \perp B D$ such that $O A=O C$ and $O B=O D$. So, $A B C D$ is a parallelogram.

To prove $A B C D$ is a square.
Proof Let $A C$ and $B D$ intersect at a point O. In $\triangle A B O$ and $\triangle A D O$, we have

$B O$	$=O D$	(Given)
	$A O$	$=O A$
\therefore	$\angle A O B$	$=\angle A O D=90^{\circ}$
(Common)		
\therefore	$\triangle A B O$	$\cong \triangle A D O$
Also,	$A B$	$=A D$
and	$A B$	$=D C \quad$ (By SASen)
\therefore	$A D$	$=B C \quad$ (Opposite sides of parallelogram)
	$A B$	$=B C=D C=A D$

Again, in $\triangle A B C$ and $\triangle B A D$, we have

| | $A B$ | $=B A$ |
| ---: | :--- | ---: | :--- |
| $A C$ | $=B D$ | |
| | $B C$ | $=A D$ |
| \therefore | $\triangle A B C$ | $\cong \triangle B A D$ |
| \therefore | $\angle A B C$ | $=\angle B A D$ |
| But | $\angle A B C+\angle B A D$ | $=180^{\circ}$ |

(Common)
(Given)
[From Eq. (i)]
(By SSS)
But
$\angle A B C+\angle B A D=180^{\circ}$
(Sum of interior angles of a parallelogram)
\therefore
Thus,
$\angle A B C=\angle B A D=90^{\circ}$ [From Eq. (ii)]
$A B=B C=C D=D A$ and $\angle A=90^{\circ}$
$\therefore A B C D$ is a square.
Hence proved.
Question 6. Diagonal $A C$ of a parallelogram $A B C D$ bisects $\angle A$ (see figure). Show that
(i) it bisects $\angle C$ also,
(ii) $A B C D$ is a rhombus.

Solution Given, diagonal $A C$ of a parallelogram $A B C D$ bisects $\angle A$.

i.e.,

$$
\begin{equation*}
\angle D A C=\angle B A C=\frac{1}{2} \angle B A D \tag{i}
\end{equation*}
$$

Here, $A B \| C D$ and $A C$ is transversal.

$$
\begin{array}{lll}
\therefore & \angle D C A=\angle C A B & \text { (Pair of alternate angle)...(ii) } \\
\text { and } & \angle B C A=\angle D A C & \text { (Pair of alternate angle)...(iii) }
\end{array}
$$

From Eqs. (i), (ii) and (iii), we get

Now,

$$
\begin{aligned}
\angle D A C & =B C A=\angle B A C=\angle D C A \\
\angle B C D & =\angle B C A+\angle D C A \\
& =\angle D A C+\angle C A B \\
& =\angle B A D
\end{aligned}
$$

\therefore Diagonal $A C$ also bisects $\angle C$.
Again, in $\triangle O A D$ and $\triangle O C D$, we have

	$O A=O C$	(\because Diagonals bisect each other)	
	$O D=O D$		(Common)
	$\angle A O D=\angle C O D=90^{\circ}$		
\therefore	$\triangle O A D \cong \triangle O C D$		(By SAS)
\therefore	$A D=C D$		(By CPCT)
Now, and	$\left.\begin{array}{l} A B=C D \\ A D=B C \end{array}\right\}$	(Opposite sides of parallelogram)	
and	$A B=C D=A D=B C$		

Hence, $A B C D$ is a rhombus.
Hence proved.
Question 7. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle B$ as well as $\angle D$.
Solution Given $A B C D$ is a rhombus.

$\therefore \quad A D=A B=B C=C D$
To prove (i) Diagonal $A C$ bisect $\angle A$ as well as $\angle C$.
(ii) Diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Proof (i) Let $A C$ and $B D$ are the diagonals of rhombus $A B C D$.
In $\triangle A B C$ and $\triangle A D C$,

	$A D=A B$	
	$C D=B C$	[From Eq. (i)]
and	$A C=C A$	(Common)
\therefore	$\triangle A B C \cong \triangle A D C$	(By SSS rule)
\therefore	$\angle D A C=\angle B A C$	(By CPCT)
and	$\angle D C A=\angle B C A$	
Also,	$\angle D A C=\angle D C A$	
and	$\angle B A C=\angle B C A$	

This shows that $A C$ bisect $\angle A$ as well as $\angle C$.
(ii) Again, in $\triangle B D C$ and $\triangle B D A$,

	$A B$	$=B C$
	$A D$	$=C D$
	$B D$	$=B D$
\therefore	$\triangle B D C$	$\cong \triangle B D A$
\therefore	$\angle B D A$	$=\angle B D C$
and	$\angle D B A$	$=\angle D B C$
Also,	$\angle B D A$	$=\angle D B A$
and	$\angle B D C$	$=\angle D B C$

(SSS rule)

This shows that $B D$ bisect $\angle B$ as well as $\angle D$.
Question 8. $A B C D$ is a rectangle in which diagonal $A C$ bisects $\angle A$ as well as $\angle C$. Show that (i) $A B C D$ is a square (ii) diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Solution Given $A B C D$ is a rectangle.

$\therefore \quad A B=C D$ and $B C=A D$
To Prove (i) $A B C D$ is a square.
i.e.,

$$
A B=B C=C D=D A
$$

(ii) Dioagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Proof (i) In $\triangle A D C$ and $\triangle A B C$, we have

Since, $A B \| D C$ and $A C$ transversal intersect

$$
\begin{aligned}
& \angle D A C=\angle B A C \\
& \angle D C A=\angle B C A
\end{aligned}
$$

and

$$
A C=C A
$$

$\therefore \quad \triangle A D C \cong \triangle A B C$
$\therefore \quad A D=A B$
and

$$
\begin{equation*}
C D=B C \tag{ii}
\end{equation*}
$$

(Common)
(By ASA rule)
(By CPCT)

Hence, from Eqs. (i) and (ii), we get

$$
A B=B C=A D=C D
$$

$\therefore A B C D$ is a square.
(ii) In $\triangle A O B$ and $\triangle C O B$, we have

$$
\begin{array}{lr}
A B=B C & \text { (Side of square) } \\
B O=O B & \text { (Common) } \\
O A=O C &
\end{array}
$$

(\because Diagonal of square bisect each other)
$\therefore \quad \triangle A O B \cong \triangle C O B$
$\therefore \quad \angle O B A=\angle O B C$
This shows that $B O$ or $B D$ bisect $\angle B$.
Similarly, in $\triangle A O D$ and $\triangle C O D$, we have

$$
\begin{aligned}
& A D=C D \\
& O D=D O
\end{aligned}
$$

(Side of square)
(Common)
and
$O A=O C$
(\because Diagonal of square bisect each other)
$\begin{array}{lll}\therefore & \triangle A O D \cong \triangle C O D & \text { (By SSS rule) } \\ \therefore & \angle A D O=\angle C D O & \end{array}$
This shows that $D O$ or $D B$ bisect $\angle D$.
Hence proved.
Question 9. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see figure). Show that

(i) $\triangle A P D \cong \triangle C Q B$
(ii) $A P=C Q$
(iii) $\triangle A Q B \cong \triangle C P D$
(iv) $A Q=C P$
(v) $A P C Q$ is a parallelogram.

Solution Given, $A B C D$ is a parallelogram and P and Q are lie on $B D$ such that

(i) We have to show,

$$
\triangle A P D \cong \triangle C Q B
$$

Now, in $\triangle A P D$ and $\triangle C Q B$, we have

$$
\begin{align*}
& D P=B Q \tag{Given}\\
& A D=B C
\end{align*}
$$

(Opposite sides are equal in parallelogram)
$\because A D \| B C$ and $B D$ is a transversal.

| \therefore | $\angle A D P$ | $=\angle Q B C$ |
| :--- | ---: | ---: |\quad (Alternate interior angle)

(iii) Here, we have to show, $\triangle A Q B \cong \triangle C P D$

Now, in $\triangle A Q B$ and $\triangle C P D$, we have

$$
\begin{array}{rr}
B Q=D P & \text { (Given) } \\
A B=C D & \text { (Opposite sides of parallelogram) }
\end{array}
$$

$\because A B \| C D$ and $B D$ is a transversal.

$$
\begin{array}{lcl}
\therefore & \angle A B Q & =\angle C D P \\
& \therefore & \triangle A Q B \cong \triangle C P D \\
\text { (iv) } & \text { Since, } & \triangle A Q B \cong \triangle C P D \\
& \therefore & A Q
\end{array}
$$

(v) Now, in $\triangle A P Q$ and $\triangle P C Q$, we have

$$
\begin{array}{lrr}
& A Q & =C P \\
& A P & =C Q \\
& P Q & =Q P \\
& & \text { [From part (iv)] } \\
\therefore & \triangle A P Q & \cong \triangle P C Q \\
\text { [From part (ii)] } \\
\therefore & \angle A P Q & =\angle P Q C \\
\text { and } & \angle A Q P & =\angle C P Q
\end{array}
$$

Now, these equal angles form a pair of alternate angle when line segment $A P$ and $Q C$ are intersected by a transversal $P Q$.
$\therefore \quad A P \| C Q$ and $A Q \| C P$
Now, both pairs of opposite sides of quadrilateral $A P C Q$ are parallel.
Hence, $A P C Q$ is a parallelogram.
Hence proved.
Question 10. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (see figure). Show that

(i) $\triangle A P B \cong \triangle C Q D$
(ii) $A P=C Q$.

Solution Given, $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendicular from vertices A and C on diagonal $B D$.
$\because A B \| C D$ and $B D$ is a transversal.
$\therefore \quad \angle C D B=\angle D B A$
(i) Now, in $\triangle A P B$ and $\triangle C Q D$, we have
(Sides of parallelogram)
(Given)
[From Eq. (i)] (By ASA rule)
(By CPCT) (By ASA rule)
(By CPCT)
(ii) :

$$
C D=A B
$$

$$
\angle C Q D=\angle A P B=90^{\circ}
$$

$$
\angle C D Q=\angle A B P
$$

$\therefore \quad \triangle A P B \cong \triangle C Q D$
$\therefore \quad A P=C Q$
Hence proved.
Question 11. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F, respectively (see figure).
Show that
(i) quadrilateral $A B E D$ is a parallelogram
(ii) quadrilateral $B E F C$ is a parallelogram

(iii) $A D \| C F$ and $A D=C F$
(iv) quadrilateral $A C F D$ is a parallelogram
(v) $A C=D F$
(vi) $\triangle A B C \cong \triangle D E F$

Solution Given, in $\triangle A B C$ and $\triangle D E F$,

$$
A B=D E, A B \| D E
$$

and $\quad B C=E F, B C \| E F$
(i) Now, in quadrilateral $A B E D$,

$$
A B=D E \text { and } A B \| D E
$$

$\Rightarrow A B E D$ is a parallelogram.
(\because A pair of opposite sides is equal and parallel)
(ii) In quadrilateral BEFC,

$$
B C=E F \text { and } B C \| E F
$$

$\Rightarrow B E F C$ is a parallelogram.
(\because A pair of opposite sides is equal and parallel)
(iii) Since, $A B E D$ is a parallelogram.
$\therefore \quad A D \| B E$ and $A D=B E$
Also, $B E F C$ in a parallelogram.
$\therefore \quad C F \| B E$ and $C F=B E$
From Eqs. (i) and (ii), we get

$$
A D \| C F \text { and } A D=C F
$$

(iv) In quadrilateral $A C F D$, we have

$$
A D \| C F \text { and } A D=C F
$$

$\Rightarrow A C F D$ is a parallelogram.
(v) Since, $A C F D$ is a parallelogram.

$$
\therefore \quad A C=D F \text { and } A C \| D F
$$

(vi) Now, in $\triangle A B C$ and $\triangle D E F$,

	$A B$	$=D E$
	$B C$	$=E F$
and	$A C$	$=D F$
\therefore	$\triangle A B C$	$\cong \Delta D E F$
(Given)		
		[From part (v)]
		(By SSS rule)

Question 12. $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see figure). Show that
(i) $\angle A=\angle B$
(ii) $\angle C=\angle D$
(iii) $\triangle A B C \cong \triangle B A D$
(iv) diagonal $A C=$ diagonal $B D$

[Hint Extend $A B$ and draw a line through C parallel to $D A$ intersecting $A B$ produced at $E]$.

Solution Given, $A B C D$ is a trapezium.

$A B \| C D$ and $A D=B C$
Now, extend $A B$ and draw a line through C parallel to $D A$ intersecting $A B$ produced at E.
Now, $A D C E$ is a parallelogram.

$$
\begin{array}{lc}
\therefore & A D \| C E \text { and } A D=C E \\
\text { But } & A D=B C \\
\therefore & A D=B C=C E
\end{array}
$$

(i) We know that, $\angle A+\angle E=180^{\circ}$
(\because Interior angles on the same side of the transversal $A E$)

$$
\begin{array}{lrl}
\Rightarrow & \angle E & =180^{\circ}-\angle A \\
\text { Since, } & B C & =E C \\
\therefore & \angle E & =\angle C B E=180^{\circ}-\angle A \\
\text { Also, } & \angle A B C & =180^{\circ}-\angle C B E \quad(\because A B E \text { is straight line }) \\
& & =180^{\circ}-180^{\circ}+\angle A
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad \angle B=\angle A \tag{i}
\end{equation*}
$$

(ii) Now, $\quad \angle A+\angle D=180^{\circ}$
(\because Interior angles on the same side of the transversal $A D$)

$$
\begin{array}{ll}
\Rightarrow & \angle D=180^{\circ}-\angle A \\
\Rightarrow & \angle D=180^{\circ}-\angle B
\end{array}
$$

[From Eq. (i)]...(ii)

Also, $\angle C+\angle B=180^{\circ}$
$(\because$ Interior angles on the same side of the transversal $B C)$
$\Rightarrow \quad \angle C=180^{\circ}-\angle B$
From Eqs. (ii) and (iii), we get

$$
\angle C=\angle D
$$

(iii) Now, in $\triangle A B C$ and $\triangle B A D$, we have

$A B$	$=B A$	(Common)
$A D$	$=B C$	(Given)
	$\angle A$	$=\angle B$
[From Eq. (i)]		
Since,	$\triangle A B C$	$\cong \triangle B A D$
[By SAS)		
Hence proved.	$\triangle A B C$	$\cong \triangle B A D$

9 Quadrilaterals

Exercise 9.2

Question 1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ (see figure). $A C$ is a diagonal. Show that
(i) $S R \| A C$ and $S R=\frac{1}{2} A C$
(ii) $P Q=S R$

(iii) $P Q R S$ is a parallelogram.

Solution Given, P, Q, R and S are mid-points of the sides.

$$
\begin{array}{ll}
\therefore & A P=P B, B Q=C Q \\
& C R=D R \text { and } A S=D S
\end{array}
$$

(i) In $\triangle A D C$, we have
S is mid-point of $A D$ and R is mid-point of the $D C$.
We know that, the line segment joining the mid-points of two sides of a triangle is parallel to the third side.

$$
\begin{array}{ll}
\therefore & S R \| A C \\
\text { Also, } & S R=\frac{1}{2} A C
\end{array}
$$

(ii) Similarly, in $\triangle A B C$, we have

$$
\begin{equation*}
P Q \| A C \tag{iii}
\end{equation*}
$$

and

$$
\begin{equation*}
P Q=\frac{1}{2} A C \tag{iv}
\end{equation*}
$$

Now, from Eqs. (ii) and (iv), we get

$$
\begin{equation*}
S R=P Q=\frac{1}{2} A C \tag{v}
\end{equation*}
$$

(iii) Now, from Eqs. (i) and (iii), we get

$$
P Q \| S R
$$

and from Eq. (v),
$P Q=S R$
Since, a pair of opposite sides of a quadrilateral $P Q R S$ is equal and parallel.
So, $P Q R S$ is a parallelogram.
Hence proved.

Question 2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral $P Q R S$ is a rectangle.

Solution Given, $A B C D$ is a rhombus and P, Q, R and S are mid-points of $A B, B C, C D$ and $D A$.

By mid-point theorem,
In $\triangle A D C$,

$$
\begin{align*}
& S R \| A C \text { and } S R=\frac{1}{2} A C \tag{i}\\
& P Q \| A C \text { and } P Q=\frac{1}{2} A C
\end{align*}
$$

In $\triangle A B C$,

$$
P Q \| S R \text { and } P Q=S R=\frac{1}{2} A C
$$

$\therefore P Q R S$ is a parallelogram.
Now, we know that diagonals of a rhombus bisect each other at right angles.
\therefore
Now, $\quad R Q \| B D \quad$ (By mid-point theorem)
$\Rightarrow \quad R E \| O F$
Also, $\quad S R \| A C$
[From Eq. (i)]
$\Rightarrow \quad F R \| O E$
$\therefore O E R F$ is a parallelogram.
So,

$$
\angle E R F=\angle E O F=90^{\circ}
$$

(Opposite angle of a quadrilateral is equal)
Thus, $P Q R S$ is a parallelogram with $\angle R=90^{\circ}$.
Hence, $P Q R S$ is a rectangle.
Question 3. $\quad A B C D$ is a rectangle and P, Q, R ans S are mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral $P Q R S$ is a rhombus.

Solution Given, $A B C D$ is a rectangle.
$\therefore \quad \angle A=\angle B=\angle C=\angle D=90^{\circ}$
and
$A D=B C, A B=C D$
Also, given P, Q, R and S are mid-points of $A B, B C, C D$ and $D A$, respectively.
$\therefore P Q \| B D$ and $P Q=\frac{1}{2} B D$

and $S R \| A C$ and $S R=\frac{1}{2} A C$
and

$$
S R \| A C \text { and } S R=\frac{1}{2} A C
$$

In rectangle $A B C D$,

$$
\begin{array}{ll}
& A C=B D \\
\therefore & P Q=S R \tag{i}
\end{array}
$$

Now, in $\triangle A S P$ and $\triangle B Q P$

	$A P=B P$
	$A S=B Q$
	$\angle A=\angle B$
\therefore	$\Delta A S P \cong \triangle B Q P$
\therefore	$S P=P Q$

(Given)
(Given)
(Given)
(By SAS)
(By CPCT)...(ii)
Similarly, in $\triangle R D S$ and $\triangle R C Q$,

	$S D$	$=C Q$
	$D R$	$=R C$
		(Given)
\therefore	$\angle C$	$=\angle D$
(Given)		
\therefore	$\triangle R D S$	$\cong \Delta R C Q$
(Given)		
	$S R$	$=R Q$

(Given)
(Given)
(By SAS)
(By CPCT)...(iii)

From Eqs. (i), (ii) and (iii), it is clear that quadrilateral $P Q R S$ is a rhombus.
Question 4. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see figure). Show that F is the mid-point of $B C$.

Solution Given, $A B C D$ is a trapezium in which $A B \| C D$ and E is mid-point of $A D$ and $E F \| A B$. In $\triangle A B D$, we have

$$
E P \| A B
$$

and E is mid-point of $A D$.
So, by theorem, if a line drawn through the mid-point of one side of a triangle parallel to
 another side bisect the third side.
$\therefore P$ is mid-point of $B D$.
Similarly, in $\triangle B C D$, we have,

$$
P F \| C D
$$

(Given)
and P is mid-point of $B D$.
So, by converse of mid-point theorem, F is mid-point of $C B$.

Question 5. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see figure). Show that the line segments $A F$ and $E C$ trisect the diagonal $B D$.

Solution Given $A B C D$ is a parallelogram and E, F are the mid-points of sides $A B$ and $C D$ respectively.
To prove Line segments $A F$ and $E C$ trisect the diagonal $B D$.
Proof Since, $A B C D$ is a parallelogram.
$A B \| D C$
and $\quad A B=D C \quad$ (Opposite sides of a parallelogram)
$\Rightarrow \quad A E \| F C$ and $\frac{1}{2} A B=\frac{1}{2} D C$
$\Rightarrow \quad A E \| F C$ and $A E=F C$
\therefore AECF is a parallelogram.
$\therefore \quad A F \| E C$
$\Rightarrow \quad E Q \| A P$ and $F P \| C Q$
In $\triangle B A P, E$ is the mid-point of $A B$ and $E Q \| A P$, so Q is the mid-point of $B P$.
(By converse of mid-point theorem)
$\therefore \quad B Q=P Q$
Again, in $\triangle D Q C, F$ is the mid-point of $D C$ and $F P \| C Q$, so P is the mid-point of $D Q$.
(By converse of mid-point theorem)
\therefore

$$
\begin{equation*}
Q P=D P \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get

$$
B Q=P Q=P D
$$

Hence, $C E$ and $A F$ trisect the diagonal $B D$.
Question 6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
Solution Let $A B C D$ is a quadrilateral and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively. i.e., $A S=S D, A P=B P, B Q=C Q$ and $C R=D R$. We have to show that $P R$ and $S Q$ bisect each other i.e., $S O=O Q$ and $P O=O R$.

Now, in $\triangle A D C, S$ and R are mid-points of $A D$ and $C D$.
We know that, the line segment joining the mid-points of two sides of a triangle is parallel to the third side.
(By mid-point theorem)
$\therefore \quad S R \| A C$ and $S R=\frac{1}{2} A C$
Similarly, in $\triangle A B C, P$ and Q are mid-points of $A B$ and $B C$.
$\therefore \quad P Q \| A C$ and $P Q=\frac{1}{2} A C \quad$ (By mid-point theorem)..
From Eqs. (i) and (ii), we get
and

$$
P Q \| S R
$$

$$
P Q=S R=\frac{1}{2} A C
$$

\therefore Quadrilateral $P Q R S$ is a parallelogram whose diagonals are $S Q$ and $P R$. Also, we know that diagonals of a parallelogram bisect each other. So, $S Q$ and $P R$ bisect each other.

Question 7. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects $A C$ at D. Show that
(i) D is the mid-point of $A C$
(ii) $M D \perp A C$
(iii) $C M=M A=\frac{1}{2} A B$

Solution Given, $A B C$ is a right angled triangle.

$$
\angle C=90^{\circ}
$$

and M is the mid-point of $A B$. Also,
$D M \| B C$
(i) In $\triangle A B C, B C \| M D$ and M is mid-point of $A B$.
$\therefore D$ is the mid-point of $A C$.
(By converse of mid-point theorem)

(ii) Since, $M D \| B C$ and $C D$ is transversal.
$\therefore \quad \angle A D M=\angle A C B$
But $\angle A C B=90^{\circ}$
$\therefore \angle A D M=90^{\circ} \Rightarrow M D \perp A C$
(iii) Now, in $\triangle A D M$ and $\triangle C D M$, we have

$$
\begin{array}{rlr}
D M & =M D & \text { (Common) } \tag{Common}\\
A D & =C D & (\because \text { Dis mid point of } A C) \\
& \angle A D M & =\angle M D C \\
\text { (Each equal to } 90^{\circ} \text {) } \\
\therefore & \triangle A D M & \cong \triangle C D M
\end{array}
$$

Also, M is mid-point of $A B$.

$$
\begin{equation*}
\therefore \quad A M=B M=\frac{1}{2} A B \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get

$$
C M=A M=\frac{1}{2} A B
$$

Hence proved.

