11 Some Applications of Trigonometry

Exercise 11.1

Question 1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see figure).

Solution In the given figure, $A B$ be the height of the pole and $A C=20 \mathrm{~m}$ be the length of rope which is tied from the top of the pole.
We have to determine the height $A B=$?
In $\triangle A B C$,

$$
\begin{array}{ll}
& \sin 30^{\circ}=\frac{A B}{A C}=\frac{A B}{20} \\
\Rightarrow & \frac{1}{2}=\frac{A B}{20} \\
\Rightarrow & A B=\frac{20}{2}=10 \mathrm{~m}
\end{array}
$$

Hence, the height of the pole be 10 m .
Question 2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.

Solution Let the initial height of the tree be $A C$. When the storm cone, the tree broke from point B. The broken part of the tree $B C$ touches the ground at point D, making an angle 30° on the ground.
Also, given $A D=8 \mathrm{~m}$
In right $\triangle A B D$,

$$
\begin{aligned}
& \tan 30^{\circ} & =\frac{A B}{A D} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{A B}{8} \\
\Rightarrow & A B & =\frac{8}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

Again in $\triangle A B D$,

$$
\begin{aligned}
\cos 30^{\circ} & =\frac{A D}{B D} \Rightarrow \frac{\sqrt{3}}{2}=\frac{8}{B D} \\
\Rightarrow \quad B D & =\frac{16}{\sqrt{3}} \\
\therefore \quad A C & =A B+B C=A B+B D \\
& =\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}
\end{aligned} \quad(\because B C=B D)
$$

Hence, the height of the tree is $8 \sqrt{3} \mathrm{~m}$.
Question 3. A contractor plans to install two slides for the children to play in a park, for the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m , and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m , and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?
Solution (i) In Fig. (a), it is the slide for the children below the age of 5 years.
Let $B C=1.5 \mathrm{~m}$ be the height of the slides and slide $A C$ is inclined at $\angle C A B=30^{\circ}$ to the ground.

(a)
(b)

In right angled $\triangle A B C$,

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{B C}{A C} \\
\Rightarrow \quad \frac{1}{2} & =\frac{1.5}{A C} \Rightarrow A C=3 \mathrm{~m}
\end{aligned}
$$

(ii) In Fig. (b), it is the slide for the elder children. Let $P Q=3 \mathrm{~m}$ be the height of the slides and slides $P R$ is inclined at an $\angle R P Q=60^{\circ}$ to the ground.
In right angled $\triangle Q P R$,

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{R Q}{P R} \Rightarrow \frac{\sqrt{3}}{2}=\frac{3}{P R} \\
\Rightarrow \quad & P R=\frac{3 \times 2}{\sqrt{3}}=2 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Hence, length of the slides in each case are 3 m and $2 \sqrt{3} \mathrm{~m}$.

Question 4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Solution Let $B C$ be the height of the tower which is standing on the ground $A B$. Let A be a point on the ground which makes an elevation of the top of the tower.
Also,

$$
A B=30 \mathrm{~m}
$$

In right angled $\triangle A B C$,

$$
\begin{array}{rlrl}
& \tan 30^{\circ} & =\frac{B C}{A B} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{B C}{30} \\
\Rightarrow & B C=\frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}
\end{array}
$$

Hence, height of the tower is $10 \sqrt{3} \mathrm{~m}$.
Question 5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
Solution Let C be the portion of the kite. $A C$ be the length of the string which makes, an angle of 60° on the ground. The height of the kite on the ground is $B C=60 \mathrm{~m}$.
In right angled $\triangle A B C$,

$$
\begin{aligned}
\Rightarrow \quad \frac{\sqrt{3}}{2} & =\frac{60}{A C} \\
\Rightarrow \quad A C & =\frac{60 \times 2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{120 \sqrt{3}}{3}=40 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Hence, length of the string is $40 \sqrt{3} \mathrm{~m}$.

Question 6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.
Solution Let $A B=30 \mathrm{~m}$ be the height of the building, $D C=1.5 \mathrm{~m}$ be the length of the man. The point D be the man eyes. The angle of elevations are $\angle B D F=30^{\circ}$ and $\angle B E F=60^{\circ}$.
Let

$$
\begin{aligned}
D E & =x \text { and } E F=y \\
B F & =A B-A F \\
& =30-1.5=28.5
\end{aligned}
$$

Now,

In right angled $\triangle B D F$,

$$
\begin{align*}
& \tan 30^{\circ} & =\frac{B F}{D F} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{28.5}{x+y} \\
\Rightarrow & x+y & =28.5 \sqrt{3} \tag{i}
\end{align*}
$$

Again, in right angled $\triangle B E F$,

$$
\begin{array}{llrl}
& \tan 60^{\circ} & =\frac{B F}{E F} \\
\Rightarrow & \sqrt{3} & =\frac{28.5}{y} \\
\Rightarrow & y & =\frac{28.5}{\sqrt{3}} \mathrm{~m}
\end{array}
$$

Putting $y=\frac{28.5}{\sqrt{3}}$ in Eq. (i), we get

$$
\begin{aligned}
x+\frac{28.5}{\sqrt{3}} & =28.5 \sqrt{3} \\
x & =28.5\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=28.5\left(\frac{3-1}{\sqrt{3}}\right) \\
& =\frac{28.5 \times 2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{57 \sqrt{3}}{3}=19 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Hence, the distance between two elevations is $19 \sqrt{3} \mathrm{~m}$.

Question 7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Solution Let $B C=20 \mathrm{~m}$ be the height of the building and $D C=h$ metre be height of the tower, which is standing on the building. A be a fixed point on the ground. From a fixed point A, the angles of elevation of the bottom and the top of the transmission tower are

$$
\angle B A C=45^{\circ} \text { and } \angle B A D=60^{\circ}
$$

Also, let $A B=x \mathrm{~m}$
In right angled $\triangle A B C$,

$$
\begin{equation*}
\tan 45^{\circ}=\frac{B C}{A B} \Rightarrow 1=\frac{20}{x} \Rightarrow x=20 \mathrm{~m} \tag{i}
\end{equation*}
$$

Again, in right angled $\triangle A B D$,

$$
\begin{array}{ll}
& \tan 60^{\circ}=\frac{B D}{A B} \\
\Rightarrow & \sqrt{3}=\frac{20+h}{x} \\
\Rightarrow & \sqrt{3}=\frac{20+h}{20} \quad \\
\Rightarrow & 20+h=20 \sqrt{3} \Rightarrow \quad h=20(\sqrt{3}-1) \mathrm{m}
\end{array}
$$

Hence, the height of the tower is $20(\sqrt{3}-1) \mathrm{m}$.
Question 8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Solution Let $B C=h$ metre be the height of the pedestal and $C D=1.6 \mathrm{~m}$ be the length of the statue, which is standing on the pedestal. Point A be a fixed point on the ground. From the point A, the angle of elevations of the top of the statue and bottom of the statue are

$$
\angle D A B=60^{\circ} \text { and } \angle C A B=45^{\circ}
$$

Also, let $A B=x$ metre

$$
\begin{array}{lr}
\text { In right angled } \triangle B A D, & \tan 60^{\circ}=\frac{B D}{A B} \\
\Rightarrow & \sqrt{3}
\end{array}=\frac{C D+C B}{x},
$$

In right $\triangle C A B$

$$
\tan 45^{\circ}=\frac{B C}{A B} \Rightarrow 1=\frac{h}{x}
$$

$$
\Rightarrow \quad x=h
$$

Putting $x=h$ in Eq. (i), we get

$$
\begin{array}{rlrl}
\Rightarrow & & h & =\sqrt{3} h-1.6 \\
\Rightarrow & & h(\sqrt{3}-1) & =1.6 \\
& & & =\frac{1.6}{(\sqrt{3}-1)} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& & =\frac{1.6}{2}(\sqrt{3}+1)=0.8(\sqrt{3}+1) \mathrm{m}
\end{array}
$$

Hence, the length of the pedestal is $0.8(\sqrt{3}+1) \mathrm{m}$.
Question 9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
Solution Let $B C=50 \mathrm{~m}$ be the height of the tower and $A D=h$ metre be the height of the building, angle of elevation, from the bottom of building and tower as well are

$\angle B A C=60^{\circ}$ and $\angle A B D=30^{\circ}$

Also, let $A B=x$ be the distance between foot of the tower and building.
In right angled $\triangle A B D$,

$$
\begin{array}{rlrl}
& & \tan 30^{\circ} & =\frac{A D}{A B} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{h}{x} \\
\Rightarrow & h & =\frac{x}{\sqrt{3}} \tag{i}
\end{array}
$$

Again, in right angled $\triangle B A C$,

$$
\begin{aligned}
& \tan 60^{\circ} & =\frac{B C}{A B} \\
\Rightarrow & \sqrt{3} & =\frac{50}{x} \\
\Rightarrow & x & =\frac{50}{\sqrt{3}} \mathrm{~m}
\end{aligned}
$$

Putting $x=\frac{50}{\sqrt{3}}$ in Eq. (i), we get

$$
\begin{aligned}
h & =\frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \\
& =\frac{50}{3}=16 \frac{2}{3} \mathrm{~m}
\end{aligned}
$$

Hence, the height of the building is $16 \frac{2}{3} \mathrm{~m}$.
Question 10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
Solution Let $A B=80 \mathrm{~m}$ be the width of the road. On both sides of the road poles $A E=B D=h$ metre are standing. Let C be any point on $A B$ such that point C makes an elevations are $\angle B C D=60^{\circ}$ and $\angle A C E=30^{\circ}$. Let $B C=x$, then $A C=A B-B C=(80-x) \mathrm{m}$ In right angled $\triangle A C E$,

$$
\begin{array}{lr}
& \tan 30^{\circ}=\frac{A E}{A C} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{h}{80-x} \\
\Rightarrow & 80-x=h \sqrt{3} \\
\Rightarrow & h \sqrt{3}+x=80 \tag{i}
\end{array}
$$

Again, in right angled $\triangle B C D$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{B D}{B C} \\
\Rightarrow \quad \sqrt{3} & =\frac{h}{x} \Rightarrow h=\sqrt{3} x \tag{ii}
\end{align*}
$$

Putting $h=\sqrt{3} x$ in Eq. (i), we get

$$
\begin{array}{lr}
& \sqrt{3} x \times(\sqrt{3})+x=80 \\
\Rightarrow & 3 x+x=80 \\
\Rightarrow & 4 x=80 \\
\Rightarrow & x=20 \mathrm{~m}
\end{array}
$$

Putting $x=20 \mathrm{~m}$ in Eq. (ii), we get

$$
h=20 \sqrt{3} \mathrm{~m}
$$

Also,

$$
\begin{aligned}
A C & =80-x \\
& =80-20=60 m
\end{aligned}
$$

Hence, height of the poles be $20 \sqrt{3} \mathrm{~m}$ and the distances of the point from the poles are 60 m and 20 m .

Question 11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see figure). Find the height of the tower and the width of the canal.

Solution Let $B C=x$ metre be the width of the canal and $A B=h$ metre be the height of the tower.
In right angled $\triangle A D B$,

$$
\begin{array}{rlrl}
\Rightarrow & \tan 30^{\circ} & =\frac{A B}{D B} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{h}{D C+C B} \\
& & \frac{1}{\sqrt{3}} & =\frac{h}{20+x}
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad 20+x=\sqrt{3} h \tag{i}
\end{equation*}
$$

Again in right angled $\triangle A C B$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{A B}{B C} \\
\Rightarrow & \sqrt{3} & =\frac{h}{x} \\
\Rightarrow & h & =\sqrt{3} x \tag{ii}
\end{array}
$$

Putting $h=\sqrt{3} x$ in Eq. (i), we get

$$
\begin{array}{cc}
& 20+x=\sqrt{3}(\sqrt{3} x) \\
\Rightarrow & 20+x=3 x \\
\Rightarrow & 2 x=20 \\
\Rightarrow & x=10 \mathrm{~m}
\end{array}
$$

Putting $x=10 \mathrm{~min}$ Eq. (ii), we get

$$
\Rightarrow \quad \begin{array}{ll}
& h=\sqrt{3}(10) \\
& h=10 \sqrt{3} \mathrm{~m}
\end{array}
$$

Hence, the height of the tower is $10 \sqrt{3} \mathrm{~m}$ and width of the canal is 10 m .
Question 12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Solution Let $A D=7 \mathrm{~m}$ be the height of the building and $B C=h$ metre be the height of the cable tower. From the top of the building D, the angles of elevation and depression are $\angle C D E=60^{\circ}$ and $\angle E D B=45^{\circ}$.
From the point D, a perpendicular line $D E$ is drawn on $B C$.
As $\quad D E \| A B$

$$
\therefore \quad \angle E D B=\angle A B D=45^{\circ} \quad \text { (alternate angle) }
$$

Also, let $A B=D E=x$ metre be the distance between building and tower.
In right angled $\triangle A B D$,

$$
\begin{align*}
& \tan 45^{\circ} & =\frac{A D}{A B} \Rightarrow 1=\frac{7}{x} \\
\Rightarrow & x & =7 \mathrm{~m} \tag{i}
\end{align*}
$$

In right angled $\triangle C D E$,

$$
\tan 60^{\circ}=\frac{C E}{D E} \Rightarrow \sqrt{3}=\frac{h-7}{x}
$$

$$
\begin{array}{lrl}
\Rightarrow & h-7 & =x \sqrt{3} \\
\Rightarrow & h & =x \sqrt{3}+7 \\
\Rightarrow & h & =7 \sqrt{3}+7 \\
\Rightarrow & h & =7(\sqrt{3}+1) \mathrm{m}
\end{array} \quad \text { [From Eq. (i), } x=7 \mathrm{~m} \text {] }
$$

Hence, the height of the tower is $7(\sqrt{3}+1) \mathrm{m}$.

Question 13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

Solution Let $C D=75 \mathrm{~m}$ be the height of the lighthouse from the sea level $A C$. Let A and B be the position of two ships on the sea-level.
From point D of a lighthouse the angle of depression of two ships A and B are
$\angle O D A=30^{\circ}$ and $\angle O D B=45^{\circ}$
$\Rightarrow \angle C A D=30^{\circ}$ and $\angle C B D=45^{\circ}$
(Alternate angle)

Let distance between two ships $A B=y$
metre and $B C=x$ metre
In right angled $\triangle A C D$,

$$
\begin{array}{ll}
& \tan 30^{\circ}=\frac{C D}{A C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{75}{A B+B C} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{75}{y+x} \Rightarrow x+y=75 \sqrt{3}
\end{array}
$$

In right angled $\triangle D B C$,

$$
\begin{array}{lr}
& \tan 45^{\circ}=\frac{C D}{B C} \\
\Rightarrow & 1=\frac{75}{x} \\
\Rightarrow & x=75 \mathrm{~m}
\end{array}
$$

Putting $x=75 \mathrm{~m}$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& & 75+y & =75 \sqrt{3} \\
\Rightarrow & y & =75(\sqrt{3}-1) \mathrm{m}
\end{array}
$$

Hence, the distance between two ships is $75(\sqrt{3}-1) \mathrm{m}$.
Question 14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° (see figure). Find the distance travelled by the balloon during the interval.

Solution Let $A D=1.2 \mathrm{~m}$ be the tall girl standing on the horizontal line $A B$. Let $F H=E B=88.2 \mathrm{~m}$ be the height of balloon from the line $A B$. At the eye of the girl D, the angle of elevations are $\angle F D C=60^{\circ}$ and $\angle E D C=30^{\circ}$.

Now,

$$
F G=E C=88.2-1.2=87 \mathrm{~m}
$$

Let the distance travelled by the balloons $H B=y$ metre and $A H=x$ metre.
$\therefore \quad D G=x$ metre and $G C=y$ metre
In right angled $\triangle F D G$,

$$
\begin{array}{lr}
& \tan 60^{\circ}=\frac{F G}{D G} \\
\Rightarrow & \sqrt{3}=\frac{87}{x} \\
\Rightarrow & x=\frac{87}{\sqrt{3}} \tag{i}
\end{array}
$$

In right angled $\triangle E D C$,

$$
\begin{align*}
& \tan 30^{\circ} & =\frac{E C}{D C} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{87}{D G+G C} \\
\Rightarrow & x+y & =87 \sqrt{3} \tag{ii}
\end{align*}
$$

\therefore From Eq. (i), putting $x=\frac{87}{\sqrt{3}}$ in Eq (ii), we get

$$
\begin{aligned}
\frac{87}{\sqrt{3}}+y & =87 \sqrt{3} \\
y & =87\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) \\
& =\frac{87(3-1)}{\sqrt{3}} \\
& =\frac{87 \times 2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{87 \times 2 \sqrt{3}}{3}=29 \times 2 \sqrt{3} \\
& =58 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Hence, the distance between two balloons are $58 \sqrt{3} \mathrm{~m}$.

Question 15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

Solution Let $C D=h$ metre be the height of the tower. At point D a man is standing on the tower and observe that a car at an angle of depression of 30°. After six second the angle of depression of the car is 60°.
i.e.

$$
\angle O D A=30^{\circ} \text { and } \angle O D B=60^{\circ}
$$

$\Rightarrow \quad \angle D A C=30^{\circ}$ and $\angle D B C=60^{\circ}$
(Alternate angle)

Let

$$
A B=y \text { and } B C=x
$$

In right angled $\triangle B C D$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{C D}{B C} \\
\Rightarrow & \sqrt{3} & =\frac{h}{x} \\
\Rightarrow & h & =\sqrt{3} x
\end{array}
$$

In right angled $\triangle A C D$,

$$
\begin{array}{ll}
& \tan 30^{\circ}=\frac{C D}{A C} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{h}{x+y} \\
\Rightarrow & x+y=h \sqrt{3} \\
\Rightarrow & x+y=\sqrt{3} x(\sqrt{3}) \\
\Rightarrow & x+y=3 x \tag{i}
\end{array}
$$

It is given, car moves from point A to B in six seconds. Let its speed be $k \mathrm{~km} / \mathrm{s}$.

$$
\begin{array}{ll}
\therefore & \text { Time }=\frac{\text { Distance }}{\text { Speed }} \\
\Rightarrow & 6=\frac{y}{k} \\
\Rightarrow & y=6 k
\end{array}
$$

\therefore From Eq. (i), we get

$$
\begin{array}{rrr}
& x+6 k=3 x \\
\Rightarrow & 6 k=2 x \\
\Rightarrow & x & =3 k
\end{array}
$$

Hence, the car moves from point B to C in 3 s .
Question 16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .

Solution Let $C D=h$ metre be the height of the tower. $A C$ be a horizontal line on a ground. A and B be the two points on a line at a distance of 9 m and 4 m from the base of the tower.

Let

$$
\angle C B D=\theta \text {, then } \angle C A D=90^{\circ}-\theta
$$

(The complementary means the sum of two angles are 90°)
In right angled $\triangle C A D$,

$$
\begin{align*}
& \tan \left(90^{\circ}-\theta\right)
\end{align*}=\frac{C D}{A C}
$$

And in right angled $\triangle C B D$,

$$
\Rightarrow \quad \tan \theta=\frac{C D}{B C}
$$

On multiplying Eqs. (i) and (ii), we get

$$
\begin{aligned}
& \cot \theta \times \tan \theta & =\frac{h}{9} \times \frac{h}{4} \\
\Rightarrow & 1 & =\frac{h^{2}}{36} \\
\Rightarrow & h^{2} & =36 \Rightarrow h=6 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the tower is 6 m .
Hence proved.

