5 Triangles

Exercise 5.1

Question 1. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (see figure). Show that $\triangle A B C \cong \triangle A B D$. What can you say about $B C$ and $B D$?

Solution In $\triangle A B C$ and $\triangle A B D$, we have
and

$$
\begin{align*}
A C & =A D \tag{Given}\\
\angle C A B & =\angle D A B \\
A B & =A B
\end{align*}
$$

$\triangle A B C \cong \triangle A B D$
\therefore
$B C=B D$
(By SAS congruence axiom)
(By CPCT)
Question 2. $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$ (see figure). Prove that

(i) $\triangle A B D \cong \triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$

Solution $\ln \triangle A B C$ and $\triangle B A C$, we have
and

$$
\begin{align*}
A D & =B C \tag{Given}\\
\angle D A B & =\angle C B A \tag{Given}\\
A B & =A B \\
\triangle A B D & \cong \triangle B A C \\
B D & =A C
\end{align*}
$$

(Common)
(By SAS congruence axiom)
(By CPCT)

Question 3. $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see figure). Show that $C D$ bisects $A B$.

Solution In $\triangle A O D$ and $\triangle B O C$, we have

$$
\angle A O D=\angle B O C
$$

$\because A B$ and $C D$ intersects at O.
\therefore Which are vertically opposite angle
\because
and

$$
\angle D A O=\angle C B O=90^{\circ}
$$

$$
\begin{equation*}
A D=B C \tag{Given}
\end{equation*}
$$

\therefore
Hence,
$\triangle A O D \cong \triangle B O C$
$O A=O B$
(By AAS congruence axiom)
(By CPCT)
$\Rightarrow O$ is the mid-pont of $A B$.
Hence, $C D$ bisects $A B$.
Question 4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see figure). Show that $\triangle A B C \cong \triangle C D A$.

Solution From figure, we have

$$
\begin{array}{rr}
\angle 1=\angle 2 & \text { (Vertically opposite angles)...(i) } \\
\angle 1=\angle 6 & \text { (Corresponding angles)...(ii) } \\
\angle 6=\angle 4 & \text { (Corresponding angles) } \ldots \text { (iii) }
\end{array}
$$

From Eqs. (i) (ii) and (iii), we have

$$
\angle 1=\angle 4
$$

and

In $\triangle A B C$ and $\triangle C D A$, we have
and

$$
\begin{aligned}
& \angle 4=\angle 2 \\
& \angle 5=\angle 3
\end{aligned}
$$

$\triangle A B C \cong \triangle C D A$
[From Eq. (iv]
(Alternate interior angles)

$$
A C=A C
$$

\therefore
(Common)
(By AAS congruence axiom)
Question 5. Line l is the bisector of an $\angle A$ and $\angle B$ is any point on $l . B P$ and $B Q$ are perpendiculars from B to the arms of $\angle A$ (see figure). Show that
(i) $\triangle A P B \cong \triangle A Q B$
(ii) $B P=B Q$ or B is equidistant from the arms of $\angle A$.

Solution In $\triangle A P B$ and $\triangle A Q B$, we have

$$
\begin{aligned}
& \angle A P B=\angle A Q B=90^{\circ} \\
& \angle P A B=\angle Q A B
\end{aligned}
$$

$(\because A B$ bisects $\angle P A Q)$
$A B=A B$
$\triangle A P B \cong \triangle A Q B$
$\stackrel{.}{\Rightarrow}$
$B P=B Q$

and
$\Rightarrow B$ is equidistant from the arms of $\angle A$.
Question 6. In figure, $A C=A E, A B=A D$ and $\angle B A D=\angle E A C$. Show that $B C=D E$.

Solution In $\triangle A B C$ and $\triangle A D E$, we have

$$
\begin{aligned}
A B & =A D \\
\angle B A D & =\angle E A C
\end{aligned}
$$

(Given)
(Given)...(i)

On adding $\angle D A C$ on both sides in Eq. (i)
$\Rightarrow \quad \angle B A D+\angle D A C=\angle E A C+\angle D A C$
$\Rightarrow \quad \angle B A C=\angle D A E$
and

$$
\begin{equation*}
A C=A E \tag{Given}
\end{equation*}
$$

\therefore
$\triangle A B C \cong \triangle A D E$
$B C=D E$
(By AAS congruence axiom)
(By CPCT)
Question 7. $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$. (see figure). Show that

(i) $\triangle D A P \cong \triangle E B P$
(ii) $A D=B E$

Solution We have,

$$
\begin{array}{rlrl}
A P & =B P \quad[\because P \text { is the mid-point of } A B \text { (Given) }] \ldots \text { (i) } \\
\angle E P A & =\angle D P B & \text { (Given) } \ldots \text { (ii) } \\
\angle B A D & =\angle A B E & \text { (Given) } \ldots \text { (iii) }
\end{array}
$$

On adding $\angle E P D$ on both sides in Eq. (ii), we have

$$
\begin{array}{lc}
\Rightarrow & \angle E P A+\angle E P D=\angle D P B+\angle E P D \\
\Rightarrow & \angle D P A=\angle E P B \tag{iv}
\end{array}
$$

Now, In $\triangle D A P$ and $\triangle E B P$, we have

$$
\begin{aligned}
\angle D P A & =\angle E P B \\
\angle D A P & =\angle E B P \\
A P & =B P \\
\triangle D A P & \cong \triangle E B P \\
A D & =B E
\end{aligned}
$$

\therefore
Hence,
(By CPCT)
Question 8. In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that

(i) $\triangle A M C \cong \triangle B M D$
(ii) $\angle D B C$ is a right angle
(iii) $\triangle D B C \cong \triangle A C B$
(iv) $C M=\frac{1}{2} A B$

Solution Given $\triangle A C B$ in which $\angle C=90^{\circ}$ and M is the mid-point of $A B$.

To prove (i) $\triangle A M C \cong \triangle B M D$ (ii) $\angle D B C$ is a right angle
(iii) $\triangle D B C \cong \triangle A C B$
(iv) $C M=\frac{1}{2} A B$

Construction Produce $C M$ to D, such that $C M=M D$. Join $D B$.
Proof $\ln \triangle A M C$ and $\triangle B M D$, we have

$$
\begin{array}{rlrl}
A M & =B M & (M \text { is the mid-point of } A B) \\
C M & =D M & \text { (Given) } \\
\angle A M C & =\angle B M D & & \text { (Vertically opposite angles) } \\
\triangle A M C & \cong \Delta B M D & (\text { By SAS congruence axiom) } \\
A C & =D B & \text { (By CPCT) ...(i) } \\
\angle 1 & =\angle 2 & & \text { (By CPCT) }
\end{array}
$$

and
\therefore
and
Which are alternate angles
$\therefore \quad B D \| C A$
Now, $B D \| C A$ and $B C$ is transversal

| \therefore | $\angle A C B+\angle C B D$ | $=180^{\circ}$ |
| ---: | :--- | ---: | :--- |
| \Rightarrow | $90^{\circ}+\angle C B D$ | $=180^{\circ}$ |
| \Rightarrow | $\angle C B D$ | $=90^{\circ}$ |
| \Rightarrow | $\angle D B C$ | $=90^{\circ}$ |

[Which is part (ii)]
In $\triangle D B C$ and $\triangle A C B$, we have

	$C B=B C$	(Common)
	$D B=A C$	[Using part (i)]
and	$\angle C B D=\angle B C A$	(Each 90°)
\therefore	$\triangle D B C \cong \triangle A C B$	(By SSA congruence axiom)
		[Which is part (iii)]
\Rightarrow	$D C=A B$	(by CPCT)
\Rightarrow	$\frac{1}{2} D C=\frac{1}{2} A B$	
\Rightarrow	$C M=\frac{1}{2} A B$	$\left.M=\frac{1}{2} D C\right)[$ Which is part (iv)]

5 Triangles

Exercise 5.2

Question 1. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at 0 . Join A to 0 . Show that
(i) $O B=O C$
(ii) $A 0$ bisects $\angle A$

Solution (i) In $\triangle A B C$, we have

	$A B$
$\Rightarrow \quad$	$\angle B$
	$\angle C C$
	$(\because$ Angles opposite to equal sides are equal)

$$
\begin{array}{lll}
\Rightarrow & \frac{1}{2} \angle B=\frac{1}{2} \angle C & \text { (Divide by } 2 \text { on both sides) } \\
\Rightarrow & \angle O B C=\angle O C B & \tag{i}\\
\text { and } & \angle O B A=\angle O C A &
\end{array}
$$

($\because O B$ and $O C$ are bisectors of $\angle B$ and $\angle C$ respectively).

$$
\left(\because \angle O B C=\frac{1}{2} \angle B \text { and } \angle O C B=\frac{1}{2} \angle C\right)
$$

$$
\begin{equation*}
\Rightarrow \quad O B=O C \tag{ii}
\end{equation*}
$$

(\because Sides opposite to equal angles are equal)
In $\triangle A B O$ and $\triangle A C D$, we have

	$A B=A C$	(Given)
	$\angle O B A=\angle O C A$	[From Eq. (i)]
\Rightarrow	$O B=O C$	[From Eq. (ii)]
\therefore	$\triangle A B O \cong \triangle A C O$	(By SAS congruence axiom)
\Rightarrow	$\angle B A O=\angle C A O$	(By CPCT)

Question 2. In $\triangle A B C, A D$ is the perpendicular bisector of $B C$ (see figure). Show that $\triangle A B C$ is an isosceles triangle in which $A B=A C$.

Solution In $\triangle A B D$ and $\triangle A C D$, we have

$$
\begin{aligned}
D B & =D C \\
\angle A D B & =\angle A D C \\
A D & =A D \\
\triangle A B D & \cong \triangle A C D \\
A B & =A C
\end{aligned}
$$

$$
(\because D \text { bisect } B C)
$$

$$
(\because A D \perp B C)
$$

and

$$
\begin{array}{lc}
\therefore & \triangle A B D \\
\Rightarrow & A B A C D \\
\Rightarrow & A B
\end{array}
$$

(By SAS congruence axiom)
(By CPCT)

Hence, $\triangle A B C$ is an isosceles triangle.
Question 3. $A B C$ is an isosceles triangle in which altitudes $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (see figure). Show that these altitudes are equal.

Solution In $\triangle A B E$ and $\triangle A C F$, we have

$$
\begin{array}{rlrl}
\angle A E B & =\angle A F C & \left(B E \perp A C, C F \perp A B, \text { each } 90^{\circ}\right) \\
\angle A & =\angle A & \text { (Common) } \\
A B & =A C & & \text { (Given) }
\end{array}
$$

and
$\begin{array}{lcr}\therefore & \triangle A B E & \cong \triangle A C F \\ \Rightarrow & B E & =C F\end{array} \quad$ (By AAS congruence axiom)
Question 4. $A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal (see figure). Show that
(i) $\triangle A B E \cong \triangle A C F$
(ii) $A B=A C$ i.e., $A B C$ is an isosceles triangle.

Solution In $\triangle A B E$ and $\triangle A C F$, we have

$$
\begin{array}{rlr}
\angle A E B & =\angle A F C & \left(\text { Each } 90^{\circ}\right) \\
\angle B A E & =\angle C A F & (\text { Common) } \\
B E & =C F & (\text { Given }) \\
\triangle A B E & \cong \triangle A C F & (\text { By AAS congruence axiom) } \\
A B & =A C & \tag{Given}
\end{array}
$$

and
\therefore
\therefore
So, $\triangle A B C$ is isosceles.
Question 5. $\quad A B C$ and $D B C$ are isosceles triangles on the same base $B C$ (see figure). Show that $\angle A B D=\angle A C D$.

Solution In $\triangle A B C$, we have

$$
\begin{aligned}
A B & =A C \quad(\because \Delta A B C \text { is an isosceles triangle }) \\
\therefore \quad \angle A B C & =\angle A C B
\end{aligned}
$$

In $\triangle D B C$, we have

$$
\left.\begin{array}{rlrl}
B D & =C D \quad(\because \Delta D B C \text { is an isosceles triangle) } \\
\therefore \quad \angle D B C & =\angle D C B \tag{ii}
\end{array} \quad \ldots \text { (ii) }\right)
$$

On adding Eqs. (i) and (ii), we have

$$
\begin{aligned}
& & \angle A B C+\angle D B C & =\angle A C B+\angle D C B \\
\Rightarrow & & \angle A B D & =\angle A C D
\end{aligned}
$$

Question 6. $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$ (see figure). Show that $\angle B C D$ is a right angle.

Solution $\ln \triangle A B C$, we have

	$A B=A C$	(Given)
\Rightarrow	$\angle A C B=\angle A$...(i)
	(\because Angles opposite to equal sides are equal)	
Now,	$A B=A D$	(Given)
\therefore	$A C=A D$	$(\because A B=A C)$

Now, In $\triangle A D C$, we have

$$
\begin{equation*}
A D=A C \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad \angle A C D=\angle A D C$
(\because Angles opposite to equal sides are equal)
On adding Eqs.(i) and (ii), we have

$$
\angle A C B+\angle A C D=\angle A B C+\angle A D C
$$

$\Rightarrow \quad \angle B C D=\angle A B C+\angle B D C \quad(\because \angle A D C=\angle B D C)$
Adding $\angle B C D$ on both sides, we have

$$
\begin{aligned}
\angle B C D+\angle B C D & =\angle A B C+\angle B D C+\angle B C D \\
\Rightarrow \quad \angle B C D & =180^{\circ} \\
\angle B C D & =90^{\circ}
\end{aligned} \quad \text { (By } \Delta \text { property) }
$$

Question 7. $A B C$ is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$, find $\angle B$ and $\angle C$.

Solution We have,

$$
\angle A=90^{\circ}
$$

$$
\begin{align*}
& A B= \tag{Given}\\
\Rightarrow \quad & A C \\
& \angle B=\angle C
\end{align*} \quad \text { (Given) }
$$

Now, we have

$$
\begin{array}{rlrl}
& \angle A+\angle B+\angle C & =180^{\circ} & \text { (By } \triangle \text { property) } \\
& 90^{\circ}+\angle B+\angle B & =180^{\circ} \\
\Rightarrow & 2 \angle B & =90^{\circ} \\
\Rightarrow & \angle B & =45^{\circ} \\
\therefore & \angle B=\angle C & =45^{\circ}
\end{array}
$$

Question 8. Show that the angles of an equilateral triangle are 60° each.

Solution Let $\triangle A B C$ be an equilateral triangle, such that

$A B=B C=C A \quad$ (By property)
Now,
$A B=A C$
$\angle B=\angle C$
(\because Angles opposite to equal sides are equal)
Similarly,

$$
\begin{equation*}
C B=C A \tag{ii}
\end{equation*}
$$

$\angle A=\angle B$
(\because Angles opposite to equal sides are equal)
From Eqs. (i) and (ii), we have

$$
\begin{equation*}
\angle A=\angle B=\angle C \tag{iii}
\end{equation*}
$$

Now,

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

(By Δ property)
$\angle A+\angle A+\angle A=180^{\circ}$
[From Eq. (iii)]
$3 \angle A=180^{\circ}$
$\angle A=60^{\circ}$
Hence,
$\angle A=\angle B=\angle C=60^{\circ}$

5 Triangles

Exercise 5.3

Question 1. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see figure). If $A D$ is extended to intersect $B C$ at P, show that

(i) $\triangle A B D \cong \triangle A C D$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) $A P$ bisects $\angle A$ as well as $\angle D$
(iv) $A P$ is the perpendicular bisector of $B C$.

Solution Given $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles having common base $B C$, such that $A B=A C$ and $D B=D C$.
To prove (i) $\triangle A B D \cong \triangle A C D$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) $A P$ bisects $\angle A$ as well as $\angle D$.
(iv) $A P$ is the perpendicular bisector of $B C$.

Proof (i) In $\triangle A B D$ and $\triangle A C D$, we have

	$A B$	$=A C$
$B D$	$=C D$	(Given)
and	$A D$	$=A D$
(Given)		
\therefore	$\triangle A B D$	$\cong \triangle A C D$

(ii) In $\triangle A B P$ and $\triangle A C P$, we have

$$
A B=A C
$$

(Given)
$(\because \triangle A B D \cong A C D)$
and

$$
\angle a=\angle b
$$

(Common)
\therefore
$\triangle A B P \cong \triangle A C P$
(By SAS congruence axiom)
(iii) $\angle a=\angle b$
$\Rightarrow A P$ bisects $\angle A$
$(\because \triangle A B D \cong \triangle A C D)$

$$
\angle A D B=\angle A D C \quad(\because \Delta A B D \cong \triangle A C D)
$$

$\Rightarrow \quad 180^{\circ}-\angle A D B=180^{\circ}-\angle A D C$
$\Rightarrow \quad \angle B D P=\angle C D P \quad$ (By linear pair axiom)
$\Rightarrow A P$ bisects $\angle D$.
(iv) $B P=C P$
$(\because \triangle A B P \cong \triangle A C P)$
and

$$
\begin{equation*}
\angle c=\angle d \tag{i}
\end{equation*}
$$

But
$\angle c+\angle d=180^{\circ}$
(Linear pair)
$\therefore \quad \angle c+\angle c=180^{\circ} \Rightarrow \angle c=90^{\circ}$, [From Eq. (i)]
$\Rightarrow \quad \angle c=\angle d=90^{\circ}$
Hence, $A P$ is the perpendicular bisector of $B C$.
Question 2. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that
(i) $A D$ bisects $B C$
(ii) $A D$ bisects $\angle A$

Solution $\ln \triangle A B D$ and $\triangle A C D$, we have

	$A B=A C$	(Given)
	$\angle A D B=\angle A D C=90^{\circ}$	$(\because$ Given $A D \perp B C)$
and	$A D=A D$	(Common)
\therefore	$\triangle A B D \cong \triangle A C D$	(By RHS congruence axiom)
	$B D=D C$	(By CPCT)
$\Rightarrow A D$ bisects $B C$.		
Also,	$\angle B A D=\angle C A D$	(By CPCT)
$\Rightarrow A D$ bisects $\angle A$.		

Question 3. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median $P N$ of $\triangle P Q R$ (see figure). Show that
(i) $\triangle A B M \cong \triangle P Q N$
(ii) $\triangle A B C \cong \triangle P Q R$

Solution We have, $A M$ is the median of $\triangle A B C$

$$
\begin{equation*}
\Rightarrow \quad B M=M C=\frac{1}{2} B C \tag{BC}
\end{equation*}
$$

$P N$ is the median of $\triangle P Q R$.
$\Rightarrow \quad Q N=N R=\frac{1}{2} Q R$
$(\because N$ bisects $Q R)$
Now, we have

$$
\begin{aligned}
& B C & =Q R & \\
\Rightarrow & \frac{1}{2} B C & =\frac{1}{2} Q R & \\
\therefore & B M & =Q N & \text { [From Eqs. (i) and (ii)] ...(iii) }
\end{aligned}
$$

(i) In $\triangle A B M$ and $\triangle P Q N$, we have

$$
\begin{aligned}
A B & =P Q \\
A M & =P N \\
B M & =Q N \\
\triangle A B M & \cong \Delta P Q N
\end{aligned}
$$

(ii) In $\triangle A B C$ and $\triangle P Q R$, we have

	$A B$	$=P Q$
		(Given)
and	$B B$	$=\angle Q$
$B C$	$=Q R$	$(\because \Delta A B M \cong \triangle P Q N)$
\therefore	$\triangle A B C$	$\cong \triangle P Q R$

Question 4. $B E$ and $C F$ are two equal altitudes of a triangle $A B C$. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

Solution In $\triangle B E C$ and $\triangle C F B$, we have

$\angle B E C=\angle C F B=90^{\circ}$
$[\because B E \perp A C$ and $C F \perp A B$ (Given) $]$

$$
B C=B C
$$

(Common)
and
$B E=C F$
(Given)
\therefore
$\triangle B E C \cong \triangle C F B$
(By RHS congruence axiom)
$\therefore \quad E C=F B$
(By CPCT)...(i)
In $\triangle A E B$ and $\triangle A F C$, we have

$$
\begin{aligned}
\angle A & =\angle A \\
\angle A E B & =\angle A F C=90^{\circ}
\end{aligned}
$$

(Common)
$(\because B E \perp A C$ and $C F \perp A B)$
(Given)
$\begin{aligned} & \text { and } & E B & =F C \\ & \therefore & \triangle A E B & \cong \triangle A F C \\ & \therefore & A E & =A F\end{aligned}$ (Given)

On adding Eqs.(i) and (ii), we have

$$
E C+A E=F B+A F
$$

$$
(\because A C=E C+A E \text { and } A B=F B+A F)
$$

$\Rightarrow \quad A C=A B$
Hence, $\triangle A B C$ is an isosceles triangle.
Question 5. $A B C$ is an isosceles triangle with $A B=A C$. Draw $A P \perp B C$ to show that $\angle B=\angle C$.

Solution In $\triangle A B P$ and $\triangle A C P$, we have

(Given)
(Common)
and

$$
(\because A P \perp B C)
$$

\therefore
\Rightarrow

$$
\begin{aligned}
A B & =A C \\
A P & =A P \\
\angle A P B & =\angle A P C=90^{\circ} \\
\triangle A B P & \cong \triangle A C P \\
\angle B & =\angle C
\end{aligned}
$$

\Rightarrow
(By RHS congruence axiom)
(By CPCT)

5 Triangles

Exercise 5.4

Question 1. Show that in a right angled triangle, the hypotenuse is the longest side.
Solution Let $A B C$ be a right angled triangle, such that $\angle A B C=90^{\circ}$

We know that,

$$
\angle A B C+\angle B C A+\angle C A B=180^{\circ}
$$

$$
\Rightarrow \quad 90^{\circ}+\angle B C A+\angle C A B=180^{\circ}
$$

$$
\Rightarrow \quad \angle B C A+\angle C A B=90^{\circ}
$$

From above, we have $\angle B C A$ and $\angle C A B$ are acute angles.

```
\(\Rightarrow \quad \angle B C A<90^{\circ}\)
and \(\quad \angle C A B<90^{\circ}\)
\(\Rightarrow \quad \angle B C A<\angle A B C\)
and \(\quad \angle C A B<\angle A B C\)
\(\Rightarrow A B<A C\) and \(B C<A C\)
                                    ( \(\because\) Side opposite to greater angle is longer)
Hence, the hypotenuse ( \(A C\) ) is the longest side.
```

Question 2. In figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$. Show that $A C>A B$.

Solution We know that,

and

$$
\angle A C B+\angle Q C B=180^{\circ}
$$

$$
\angle A B C+\angle P B C=180^{\circ}
$$

(Linear pair)...(i)
(Linear pair)...(ii)

From Eqs. (i) and (ii), we have

$$
\begin{equation*}
\angle A B C+\angle P B C=\angle A C B+\angle Q C B \tag{iii}
\end{equation*}
$$

But

$$
\angle P B C<\angle Q C B
$$

From Eqs. (iii) and (iv), we have

$$
\begin{aligned}
\angle A B C> & \angle A C B \\
\Rightarrow \quad A C> & A B \\
& (\because \text { Side opposite to greater angle is longer })
\end{aligned}
$$

Question 3. In figure, $\angle B<\angle A$ and $\angle C<\angle D$. Show that $A D<B C$.
Solution We have, $\angle B<\angle A$
(Given)

and

$$
\begin{gather*}
\angle C<\angle D \tag{Given}\\
A O<B O \tag{i}
\end{gather*}
$$

\therefore
and

$$
\begin{equation*}
O D<O C \tag{ii}
\end{equation*}
$$

(\because Side opposite to greater angle is longer).
On adding Eqs. (i) and (ii), we have

$$
\begin{gathered}
(A O+O D)<(B O+O C) \\
A D<B C
\end{gathered}
$$

Question 4. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$ (see figure). Show that $\angle A>\angle C$ and $\angle B>\angle D$.

Solution Given $A B C D$ is a quadrilateral. $A B$ is the smallest side and $C D$ is the longest side.
To prove $\angle A>\angle C$ and $\angle B>\angle D$
Construction Join A to C and B to D.
Proof $\ln \triangle A B C$, we have $A B$ is the smallest side.

```
\therefore AB<BC
=> }\angle5<\angle
```

(\because Angle opposite to longer side is greater) ...(i)
In $\triangle A D C$, we have $C D$ is the largest side.

$$
\begin{array}{ll}
\therefore & C D>A D \\
\Rightarrow & \angle 2>\angle 6 \tag{ii}
\end{array}
$$

(\because Angle opposite to longer side is greater)
On adding Eqs. (i) and (ii), we have

$$
\begin{array}{cc}
& \angle 1+\angle 2>\angle 5+\angle 6 \\
\Rightarrow & \angle A>\angle C
\end{array}
$$

Now, in $\triangle A D B, A B$ is the smallest side.
\therefore
$A D>A B$
\Rightarrow
$\angle 3>\angle 8$
(\because Angle opposite to longer side is greater)
In $\triangle B C D, C D$ is the greatest side.
\therefore
$C D>B C$
$\Rightarrow \quad \angle 4>\angle 7$
(\because Angle opposite to longer side is greater)

On adding Eqs. (iii) and (iv), we have

$$
\begin{gathered}
(\angle 3+\angle 4)>(\angle 8+\angle 7) \\
\angle B<\angle D
\end{gathered}
$$

Question 5. In figure, $P R>P Q$ and $P S$ bisects $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.

Solution In $\triangle P Q R$, we have

$$
\begin{equation*}
P R>P Q \tag{Given}
\end{equation*}
$$

\Rightarrow
$\angle P Q R>\angle P R Q$
(\because Angle opposite to longer side is greater)

Now,
$\angle a=\angle b$
$(\because P S$ bisects $\angle Q P R)$

On adding Eqs. (i) and (ii), we have

$$
\begin{equation*}
(\angle P Q R+\angle a)>(\angle P R Q+\angle b) \tag{iii}
\end{equation*}
$$

Now, $\quad \angle P Q S+\angle a+\angle P S Q=180^{\circ} \quad$ (By Δ property) \ldots (iv)
and $\quad \angle P R S+\angle b+\angle P S R=180^{\circ} \quad$ (By Δ property)...(v)
From Eqs. (iv) and (v), we have

$$
\begin{array}{rlrl}
& \angle P Q S+\angle a+\angle P S Q & =\angle P R S+\angle b+\angle P S R=180^{\circ} \\
\Rightarrow & & \angle P Q R+\angle a+\angle P S Q= & \angle P R Q+\angle b+\angle P S R \tag{vi}\\
& & (\because \angle P R S=\angle P R Q, \angle P Q S=\angle P Q R)
\end{array}
$$

From Eqs. (iii) and (vi), we have
$\angle P S Q<\angle P S R$
(\because Side opposite to greater angle is longer)
Question 6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution Given x is a line and A is a point not lying on $x . A B \perp x, C$ is any point on x other than B.

To prove $A B<A C$
Proof $\ln \triangle A B C, \angle B$ is the right angle.
$\therefore \angle C$ is an acute angle.

```
\(\therefore\)
\(\Rightarrow \quad A C>A B\)
    ( \(\because\) Side opposite to greater angle is longer)
\(\Rightarrow \quad A B<A C\)
```

Hence, the perpendicular line segment is the shortest.

5 Triangles

Exercise 5.5 (Optional)*

Question 1. $A B C$ is a triangle. Locate a point in the interior of $\triangle A B C$ which is equidistant from all the vertices of $\triangle A B C$.

Solution Suppose $O M$ and $O N$ be the perpendicular bisectors of sides $B C$ and $A C$ of $\Delta A B C$.

So, O is equidistant from two end points B and C of line segment $B C$ as O lies on the perpendicular bisector of $B C$. Similarly, O is equidistant from C and A. Hence, O be an orthocentre of $\triangle A B C$.

Question 2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Solution Suppose $B N$ and $C M$ be the bisectors of $\angle A B C$ and $\angle A C B$, respectively intersect $A C$ and $A B$ at N and M, respectively.

Since, O lies on the bisector $B N$ of $\angle A B C$, so O will be equidistant from $B A$ and $B C$. Again, O lies on the bisector $C M$ of $\angle A C B$. So, O will be equidistant from $C A$ and $B C$. Thus, O will be equidistant from $A B, B C$ and $C A$.
Hence, O be a circumcentre of $\triangle A B C$.

Question 3. In a huge park, people are concentrated at three points (see figure)
A: where these are different slides and swings for children.

B : near which a man-made lake is situated.
C : which is near to a large parking and exist.
Where should an ice-cream parlour be set up so that $B_{\text {。 }}$ maximum number of persons can approach it?
[Hint The parlour should be equidistant from A, B and C.]
Solution The ice-cream parlour should be equidistant from A, B and C for which the point of intersection of perpendicular bisectors of $A B, B C$ and $C A$ should be situated.
So, O is the required point which is equidistant from A, B and C.
Question 4. Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Solution. We first divide the hexagon into six equilateral triangles of side 5 cm as follow.

We take one triangle from six equilateral triangle as shown above and make as many equilateral triangles of one side 1 cm as shown in the figure.

The number of equilateral triangles of side $1 \mathrm{~cm}=1+3+5+7+9=25$
So, the total number of triangles in the hexagon $=6 \times 25=150$.
To find the number of triangles in the Fig. (ii), we adopt the same procedure.
So, the number of triangles in the Fig. (ii) $=12 \times 25=300$.
Hence, Fig. (ii) has more triangles.

