Exercise 5.1

Question 1. In quadrilateral *ACBD*, AC = AD and *AB* bisects $\angle A$ (see figure). Show that $\triangle ABC \cong \triangle ABD$. What can you say about *BC* and *BD*?

Solution In $\triangle ABC$ and $\triangle ABD$, we have

	AC = AD	(Given)
	$\angle CAB = \angle DAB$	$(:: AB \text{ bisects } \angle A)$
and	AB = AB	(Common)
	$\Delta \ ABC \cong \Delta \ ABD$	(By SAS congruence axiom)
	BC = BD	(By CPCT)

Question 2. *ABCD* is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see figure). Prove that

(i) $\triangle ABD \cong \triangle BAC$ (iii) $\angle ABD = \angle BAC$

Solution In \triangle *ABC* and \triangle *BAC*, we have

	AD = BC	(Given)
	$\angle DAB = \angle CBA$	(Given)
and	AB = AB	(Common)
.:.	$\Delta ABD \cong \Delta BAC$	(By SAS congruence axiom)
Hence,	BD = AC	(By CPCT)

$$\angle ABD = \angle BAC$$

(By CPCT)

Question 3. AD and BC are equal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.

Solution In $\triangle AOD$ and $\triangle BOC$, we have

$$\angle AOD = \angle BOC$$

: AB and CD intersects at O.

: Which are vertically opposite angle

Question 4. *l* and *m* are two parallel lines intersected by another pair of parallel lines *p* and *q* (see figure). Show that $\triangle ABC \cong \triangle CDA$.

Solution From figure, we have

 $\angle 1 = \angle 2$ $\angle 1 = \angle 6$

$$\angle 6 = \angle 4$$

From Eqs. (i) (ii) and (iii), we have

$$\angle 1 = \angle 4$$

Mathematics-IX

Triangles

(Vertically opposite angles)...(i)

(Corresponding angles)...(ii) (Corresponding angles) ...(iii) and

In Δ ABC and Δ CDA, we have

$$\angle 4 = \angle 2$$

$$\angle 5 = \angle 3$$

and

$$AC = AC$$

$$\therefore \qquad \Delta ABC \cong \Delta CDA$$

Question 5. Line *l* is the bisector of an $\angle A$ and $\angle B$ is any point on *l*. *BP* and *BQ* are perpendiculars from *B* to the arms of $\angle A$ (see figure). Show that

(i)
$$\triangle APB \cong \triangle AQB$$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Solution In $\triangle APB$ and $\triangle AQB$, we have

[From Eq. (iv] (Alternate interior angles) (Common) (By AAS congruence axiom)

Question 6. In figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

D

Question 7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. (see figure). Show that

(i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE

Solution We have,

 $\begin{array}{ll} AP = BP & [\because P \text{ is the mid-point of } AB \text{ (Given)}]...(i) \\ \angle EPA = \angle DPB & (Given)...(ii) \\ \angle BAD = \angle ABE & (Given)...(iii) \\ On adding \angle EPD \text{ on both sides in Eq. (ii), we have} \end{array}$

$$\Rightarrow \qquad \angle EPA + \angle EPD = \angle DPB + \angle EPD$$

$$\Rightarrow \qquad \angle DPA = \angle EPB$$

...(iv)

R

P

Now, $\ln \Delta DAP$ and ΔEBP , we have

	$\angle DPA = \angle EPB$	[From Eq. (iv)]
	$\angle DAP = \angle EBP$	(Given)
and	AP = BP	[From Eq. (i)]
	$\Delta DAP \cong \Delta EBP$	(By ASA congruence axiom)
Hence,	AD = BE	(By CPCT)

Question 8. In right triangle *ABC*, right angled at *C*, *M* is the mid-point of hypotenuse *AB*. *C* is joined to *M* and produced to a point *D* such that DM = CM. Point *D* is joined to point *B* (see figure). Show that

(i) $\triangle AMC \cong \triangle BMD$

(ii) $\angle DBC$ is a right angle

Mathematics-IX

(iii) $\triangle DBC$	\cong	ΔACB
------	-------------------	---------	--------------

(iv)
$$CM = \frac{1}{2} AB$$

Solution Given \triangle *ACB* in which $\angle C = 90^{\circ}$ and *M* is the mid-point of *AB*.

Mathematics-IX

Exercise 5.2

Question 1. In an isosceles triangle *ABC*, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at 0. Join A to 0. Show that

(i) OB = OC

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

...

and

(ii) A0 bisects $\angle A$

Solution (i) In \triangle ABC, we have

AB = AC(Given) $\angle B = \angle C$

(:: Angles opposite to equal sides are equal)

 \Rightarrow

 \Rightarrow AO is the bisector of \angle BAC.

Question 2. In $\triangle ABC$, AD is the perpendicular bisector of BC (see figure). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Solution In $\triangle ABD$ and $\triangle ACD$, we have

	DB = DC	(::D bisect BC)
	$\angle ADB = \angle ADC$	$(:: AD \perp BC)$
and	AD = AD	(Common)
.:.	$\Delta \ ABD \cong \Delta \ ACD$	(By SAS congruence axiom)
\Rightarrow	AB = AC	(By CPCT)

Hence, ΔABC is an isosceles triangle.

Question 3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see figure). Show that these altitudes are equal.

Solution In \triangle *ABE* and \triangle *ACF*, we have

$\angle AEB = \angle AFC$	(<i>BE</i> \perp <i>AC</i> , <i>CF</i> \perp <i>AB</i> , each 90°)
$\angle A = \angle A$	(Common)
AB = AC	(Given)
$\Delta \ \textit{ABE} \cong \Delta \ \textit{ACF}$	(By AAS congruence axiom)
BE = CF	(By CPCT)
	$\angle A = \angle A$ $AB = AC$ $\Delta ABE \cong \Delta ACF$

Question 4. *ABC* is a triangle in which altitudes *BE* and *CF* to sides *AC* and *AB* are equal (see figure). Show that

- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC *i.e.*, ABC is an isosceles triangle.

Mathematics-IX

So, ΔABC is isosceles.

Question 5. *ABC* and *DBC* are isosceles triangles on the same base *BC* (see figure). Show that $\angle ABD = \angle ACD$.

Solution In \triangle *ABC*, we have

AB = AC (:: $\triangle ABC$ is an isosceles triangle) $\angle ABC = \angle ACB$ (i) (:: Angles opposite to equal sides are equal)

In Δ *DBC*, we have

...

...

 \Rightarrow

BD = CD	(:: ΔDBC is an isosceles triangle)
$\angle DBC = \angle DCB$	(ii)

(: Angles opposite to equal sides are equal)

On adding Eqs. (i) and (ii), we have

$$\angle ABC + \angle DBC = \angle ACB + \angle DCB$$

 $\angle ABD = \angle ACD$

Mathematics-IX

Question 6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side *BA* is produced to *D* such that AD = AB (see figure). Show that $\angle BCD$ is a right angle.

Solution In \triangle *ABC*, we have

	AB = AC	(Given)
\Rightarrow	$\angle ACB = \angle ABC$	(i)
	(·· Angles opposit	e to equal sides are equal)
Now,	AB = AD	(Given)
	AC = AD	(:: AB = AC)
Now In A ADC we have	۵	

Now, In Δ *ADC*, we have

 \Rightarrow

(From above)	AD = AC
2(ii)	$\angle ACD = \angle ADC$
s opposite to equal sides are equal)	(:: Angles

On adding Eqs.(i) and (ii), we have

$$\angle ACB + \angle ACD = \angle ABC + \angle ADC$$

$$\Rightarrow \qquad \angle BCD = \angle ABC + \angle BDC \qquad (\because \angle ADC = \angle BDC)$$
Adding $\angle BCD$ on both sides, we have
$$\angle BCD + \angle BCD = \angle ABC + \angle BDC + \angle BCD$$

$$\Rightarrow \qquad 2 \angle BCD = 180^{\circ} \qquad (By \ \Delta \text{ property})$$

$$\angle BCD = 90^{\circ}$$

Question 7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC, find $\angle B$ and $\angle C$.

Solution We have, $\angle A = 90^{\circ}$ (Given)

AB = AC	(Given)
$\angle B = \angle C$	

 \Rightarrow

(: Angles opposite to equal sides are equal)

Now, we have

	$\angle A + \angle B + \angle C = 180^{\circ}$	(By Δ property)
	$90^{\circ} + \angle B + \angle B = 180^{\circ}$	
\Rightarrow	$2 \angle B = 90^{\circ}$	
\Rightarrow	$\angle B = 45^{\circ}$	
:	$\angle B = \angle C = 45^{\circ}$	

Question 8. Show that the angles of an equilateral triangle are 60° each.

Solution Let \triangle ABC be an equilateral triangle, such that

Hence,

Mathematics-IX

Exercise 5.3

Question 1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base *BC* and vertices *A* and *D* are on the same side of *BC* (see figure). If *AD* is extended to intersect *BC* at *P*, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects $\angle A$ as well as $\angle D$

(iv) AP is the perpendicular bisector of BC.

Solution Given $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles having common base *BC*, such that *AB* = *AC* and *DB* = *DC*.

To prove (i) $\triangle ABD \cong \triangle ACD$

- (ii) $\Delta ABP \cong \Delta ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.

Proof (i) In $\triangle ABD$ and $\triangle ACD$, we have

AB = AC	(Given)
BD = CD	(Given)
AD = AD	(Common)
$\Delta ABD \cong \Delta ACD$	(By SSS congruence axiom)
	BD = CD $AD = AD$

(ii) In \triangle ABP and \triangle ACP, we have AB = AC(Given) $\angle a = \angle b$ $(:: \Delta ABD \cong ACD)$ AP = APand (Common) ÷ $\Delta ABP \cong \Delta ACP$ (By SAS congruence axiom) $(:: \Delta ABD \cong \Delta ACD)$ (iii) $\angle a = \angle b$ \Rightarrow AP bisects $\angle A$ $\angle ADB = \angle ADC$ $(:: \Delta ABD \cong \Delta ACD)$ $180^{\circ} - \angle ADB = 180^{\circ} - \angle ADC$ \Rightarrow $\angle BDP = \angle CDP$ (By linear pair axiom) \Rightarrow \Rightarrow AP bisects $\angle D$. (iv) BP = CP $(:: \Delta ABP \cong \Delta ACP)$ $\angle c = \angle d$ and ...(i) $\angle c + \angle d = 180^{\circ}$ But (Linear pair) $\angle c + \angle c = 180^\circ \Rightarrow \angle c = 90^\circ$, [From Eq. (i)] *:*.. $\angle c = \angle d = 90^{\circ}$ \Rightarrow Hence, AP is the perpendicular bisector of BC.

Question 2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects $\angle A$

Solution In \triangle *ABD* and \triangle *ACD*, we have

Mathematics-IX

Question 3. Two sides *AB* and *BC* and median *AM* of one triangle *ABC* are respectively equal to sides *PQ* and *QR* and median *PN* of $\triangle PQR$ (see figure). Show that

Question 4. *BE* and *CF* are two equal altitudes of a triangle *ABC*. Using RHS congruence rule, prove that the triangle *ABC* is isosceles.

Solution In $\triangle BEC$ and $\triangle CFB$, we have

(: AC = EC + AE and AB = FB + AF)

 \Rightarrow

Hence, ΔABC is an isosceles triangle.

Question 5. ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.

AC = AB

Solution In $\triangle ABP$ and $\triangle ACP$, we have

AB = AC	(Given)
AP = AP	(Common)
$\angle APB = \angle APC = 90^{\circ}$	$(:: AP \perp BC)$
$\Delta ABP \cong \Delta ACP$	(By RHS congruence axiom)
$\angle B = \angle C$	(By CPCT)

and ∴

 \Rightarrow

Mathematics-IX

Exercise 5.4

Question 1. Show that in a right angled triangle, the hypotenuse is the longest side.

Solution Let *ABC* be a right angled triangle, such that $\angle ABC = 90^{\circ}$

We know that,

 $\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$ (By Δ property) $90^{\circ} + \angle BCA + \angle CAB = 180^{\circ}$ \Rightarrow $\angle BCA + \angle CAB = 90^{\circ}$ \Rightarrow From above, we have $\angle BCA$ and $\angle CAB$ are acute angles. $\angle BCA < 90^{\circ}$ \Rightarrow and $\angle CAB < 90^{\circ}$ $\angle BCA < \angle ABC$ \Rightarrow and $\angle CAB < \angle ABC$ \Rightarrow AB < AC and BC < AC (:: Side opposite to greater angle is longer)

Hence, the hypotenuse (AC) is the longest side.

Question 2. In figure, sides *AB* and *AC* of $\triangle ABC$ are extended to points *P* and *Q* respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.

Solution We know that,

 $\angle ACB + \angle QCB = 180^{\circ} \qquad (Linear pair)...(i)$ and $\angle ABC + \angle PBC = 180^{\circ} \qquad (Linear pair)...(ii)$ From Eqs. (i) and (ii), we have $\angle ABC + \angle PBC = \angle ACB + \angle QCB \qquad ...(iii)$

Mathematics-IX

...

 \Rightarrow

But $\angle PBC < \angle QCB$

From Eqs. (iii) and (iv), we have

 \Rightarrow

and

and

...

 $\angle ABC > \angle ACB$ AC > AB

(:: Side opposite to greater angle is longer)

(:: Side opposite to greater angle is longer)...(ii)

Question 3. In figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC. **Solution** We have, $\angle B < \angle A$ (Given)

On adding Eqs. (i) and (ii), we have

(AO + OD) < (BO + OC)AD < BC

AB < BC

∠5 < ∠1

AO < BO

OD < OC

Question 4. *AB* and *CD* are respectively the smallest and longest sides of a quadrilateral *ABCD* (see figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

D

To prove $\angle A > \angle C$ and $\angle B > \angle D$

Construction Join *A* to *C* and *B* to *D*.

Proof In $\triangle ABC$, we have AB is the smallest side.

(: Angle opposite to longer side is greater) ...(i)

In $\triangle ADC$, we have CD is the largest side.

(Given)...(iv)

(Given)

...(i)

Question 5. In figure, PR > PQ and *PS* bisects $\angle QPR$. Prove that

∠B < ∠D

 \Rightarrow

(:: PS bisects $\angle QPR$)...(ii)

Now,

Mathematics-IX

On adding Eqs. (i) and (ii), we have $(\angle PQR + \angle a) > (\angle PRQ + \angle b) \qquad \dots (iii)$ Now, $\angle PQS + \angle a + \angle PSQ = 180^{\circ}$ (By \triangle property)...(iv) and $\angle PRS + \angle b + \angle PSR = 180^{\circ}$ (By \triangle property)...(v) From Eqs. (iv) and (v), we have $\angle PQS + \angle a + \angle PSQ = \angle PRS + \angle b + \angle PSR = 180^{\circ}$ $\Rightarrow \angle PQR + \angle a + \angle PSQ = \angle PRQ + \angle b + \angle PSR = 180^{\circ}$ $\therefore \angle PRS = \angle PRQ, \angle PQS = \angle PQR$

From Eqs. (iii) and (vi), we have

$\angle PSQ < \angle PSR$

(:: Side opposite to greater angle is longer)

Question 6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution Given x is a line and A is a point not lying on x. $AB \perp x$, C is any point on x other than B.

To prove AB < AC**Proof** In \triangle *ABC*, \angle *B* is the right angle.

 $\therefore \angle C$ is an acute angle.

÷

 \Rightarrow

 \Rightarrow

(:: Side opposite to greater angle is longer)

AB < AC

/B > /C

AC > AB

Hence, the perpendicular line segment is the shortest.

Exercise 5.5 (Optional)*

Question 1. *ABC* is a triangle. Locate a point in the interior of $\triangle ABC$ which is equidistant from all the vertices of $\triangle ABC$.

Solution Suppose *OM* and *ON* be the perpendicular bisectors of sides *BC* and *AC* of \triangle *ABC*.

So, *O* is equidistant from two end points *B* and *C* of line segment *BC* as *O* lies on the perpendicular bisector of *BC*. Similarly, *O* is equidistant from *C* and *A*. Hence, *O* be an orthocentre of ΔABC .

Question 2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Solution Suppose *BN* and *CM* be the bisectors of $\angle ABC$ and $\angle ACB$, respectively intersect *AC* and *AB* at *N* and *M*, respectively.

Since, *O* lies on the bisector *BN* of $\angle ABC$, so *O* will be equidistant from *BA* and *BC*. Again, *O* lies on the bisector *CM* of $\angle ACB$. So, *O* will be equidistant from *CA* and *BC*. Thus, *O* will be equidistant from *AB*, *BC* and *CA*. Hence, *O* be a circumcentre of $\triangle ABC$.

Question 3. In a huge park, people are concentrated at three points (see figure)

A: where these are different slides and swings for •^A children.

B : near which a man-made lake is situated.

C : which is near to a large parking and exist.

Where should an ice-cream parlour be set up so that B_{\bullet} maximum number of persons can approach it?

[**Hint** The parlour should be equidistant from *A*, *B* and C.]

Solution The ice-cream parlour should be equidistant from A, B and C for which the point of intersection of perpendicular bisectors of AB, BC and CA should be situated.

So, *O* is the required point which is equidistant from *A*, *B* and *C*.

Question 4. Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Solution. We first divide the hexagon into six equilateral triangles of side 5 cm as follow.

We take one triangle from six equilateral triangle as shown above and make as many equilateral triangles of one side 1 cm as shown in the figure.

The number of equilateral triangles of side 1 cm = 1 + 3 + 5 + 7 + 9 = 25

So, the total number of triangles in the hexagon = $6 \times 25 = 150$.

To find the number of triangles in the Fig. (ii), we adopt the same procedure.

So, the number of triangles in the Fig. (ii) = $12 \times 25 = 300$. Hence, Fig. (ii) has more triangles.

Mathematics-IX

Triangles

•C