4 Triangles

Exercise 4.1

Question 1. Fill in the blanks using the correct word given in brackets.
(i) All circles are \qquad .(congruent, similar)
(ii) All squares are \qquad .(similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad (b) their corresponding sides are(equal, proportional).
Solution (i) All circles are similar because they have similar shape but not same size.
(ii) All squares are similar because they have similar shape but not same size.
(iii) All equilateral triangles are similar because they have similar shape but not same size.
(iv) Two polygons of the same number of sides are similar, if
(a) their corresponding angles are equal.
(b) their corresponding sides are proportional.

Question 2. Give two different examples of pair of
(i) similar figures.
(ii) non-similar figures.

Solution (i) (a) Pair of equilateral triangle are similar figures.
(b) Pair of squares are similar figures.
(ii) (a) A triangle and a quadrilateral form a pair of non-similar figures.
(b) A square and a trapezium form a pair of non-similar figures.

Question 3. State whether the following quadrilaterals are similar or not

Solution The two quadrilaterals, in figure are not similar because their corresponding angles are not equal. It is clear from the figure that, $\angle A$ is 90° but $\angle P$ is not 90°.

4 Triangles

Exercise 4.2

Question 1. In figures, (i) and (ii), $D E \| B C$. Find $E C$ in figure (i) and $A D$ in figure (ii).

(i)

(ii)

Solution (i) In figure (i), $D E \| B C$

$$
\begin{array}{lc}
\Rightarrow & \frac{A D}{D B}=\frac{A E}{E C} \quad \text { (By basic proportionality theorem) } \\
\Rightarrow & \frac{1.5}{3}=\frac{1}{E C} \\
& (\because A D=1.5 \mathrm{~cm}, D B=3 \mathrm{~cm} \text { and } A E=1 \mathrm{~cm}, \text { given }) \\
\Rightarrow & E C=\frac{3}{1.5}=2 \mathrm{~cm}
\end{array}
$$

(ii) In figure (ii),

$$
\begin{array}{lll}
\Rightarrow & \frac{A D}{D B}=\frac{A E}{E C} \\
\Rightarrow & \frac{A D}{7.2}=\frac{1.8}{5.4} \quad(\because A E=1.8 \mathrm{~cm}, E C=5.4 \mathrm{~cm} \text { and } B D=7.2 \mathrm{~cm}, \text { given) } \\
\Rightarrow & A D=\frac{1.8 \times 7.2}{5.4}=2.4 \mathrm{~cm}
\end{array} \quad \text { (By basic proportionality theorem) }
$$

Question 2. $\quad E$ and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$, for each of the following cases, state whether $E F \| Q R$
(i) $P E=3.9 \mathrm{~cm}, E Q=3 \mathrm{~cm}, P F=3.6 \mathrm{~cm}$ and $F R=2.4 \mathrm{~cm}$.
(ii) $P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}$ and $R F=9 \mathrm{~cm}$.
(iii) $P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}$ and $P F=0.36 \mathrm{~cm}$.

Solution (i) In figure,

$$
\begin{aligned}
& \frac{P E}{E Q}=\frac{3.9}{3}=1.3, \frac{P F}{F R}=\frac{3.6}{2.4}=\frac{3}{2}=1.5 \\
& \Rightarrow \\
& \Rightarrow \quad \frac{P E}{E Q} \neq \frac{P F}{F R} \\
& \Rightarrow E F \text { is not parallel } Q R \text { because } \\
& \text { converse of basic proportionality } \\
& \text { theorem is not satisfied. }
\end{aligned}
$$

(ii) In figure,

$$
\frac{P E}{E Q}=\frac{4}{4.5}=\frac{40}{45}=\frac{8}{9}
$$

and

$$
\frac{P F}{F R}=\frac{8}{9}
$$

$$
\Rightarrow \quad \frac{P E}{E Q}=\frac{P F}{F R}
$$

$\Rightarrow E F \| Q R$ because converse of basic proportionality of theorem is satisfied.
(iii) In figure, $\quad \frac{P E}{E Q}=\frac{P E}{P Q-P E}=\frac{0.18}{1.28-0.18}=\frac{0.18}{1.10}=\frac{9}{55}$

and

$$
\begin{gathered}
\frac{P F}{F R}=\frac{P F}{P R-P F} \\
\frac{0.36}{2.56-0.36}=\frac{0.36}{2.20}=\frac{9}{55}
\end{gathered}
$$

$$
\Rightarrow \quad \frac{P E}{E Q}=\frac{P F}{F R}
$$

$\Rightarrow E F \| Q R$ because converse of basic proportionality theorem is satisfied.

Question 3. In figure, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

Solution $\ln \triangle A C B$,

$$
\begin{gather*}
L M \| C B \tag{Given}\\
\frac{A M}{M B}=\frac{A L}{L C} \tag{i}
\end{gather*}
$$

\Rightarrow
(Basic proportionality theorem)

$$
\begin{array}{ll}
\text { In } \triangle A C D, & L N \| C D \\
\Rightarrow & \frac{A N}{N D}=\frac{A L}{L C}
\end{array}
$$

(Basic proportionality theorem)
From Eqs. (i) and (ii), we get

$$
\begin{aligned}
\frac{A M}{M B} & =\frac{A N}{N D} \Rightarrow \frac{M B}{A M}=\frac{N D}{A N} \\
\frac{M B}{A M}+1 & =\frac{N D}{A N}+1 \quad \text { (Adding both sides by 1) } \\
\Rightarrow \quad & \frac{M B+A M}{A M}
\end{aligned}=\frac{N D+A N}{A N} \quad 1+\frac{A M}{A M+M B}=\frac{A N}{A N+N D} \Rightarrow \frac{A M}{A B}=\frac{A N}{A D} \quad 4
$$

Hence proved.
Question 4. In figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$.

Solution $\ln \triangle B A C$,
\Rightarrow
$\begin{array}{ll} & \overline{E C} \overline{D A} \\ \ln \triangle B A E, & D F \| A E \\ \Rightarrow & \frac{B F}{F E}=\frac{B D}{D A}\end{array}$

$$
D E \| A C
$$

$$
\begin{equation*}
\frac{B E}{E C}=\frac{B D}{D A} \tag{i}
\end{equation*}
$$

(Basic proportionality theorem)
(Given)
(Basic proportionality theorem)
From Eqs. (i) and (ii), we get

$$
\frac{B F}{F E}=\frac{B E}{E C}
$$

Hence proved.
Question 5. In figure, $D E \| O Q$ and $D F \| O R$. Show that $E F \| Q R$.

Solution In figure, $D E \| O Q$ and $D F \| O R$, then by basic proportionality theorem,

$$
\begin{equation*}
\text { In } \triangle P Q O \text {, we have, } \quad \frac{P E}{E Q}=\frac{P D}{D O} \tag{i}
\end{equation*}
$$

and in $\triangle P O R$,

$$
\begin{align*}
& \frac{P F}{F R}=\frac{P D}{D O} \tag{ii}\\
& \frac{P E}{E Q}=\frac{P F}{F R}
\end{align*}
$$

From Eqs. (i) and (ii),

$E F \| Q R$
(By converse of basic proportionality theorem)
Hence proved.
Question 6. In figure A, B and C are points on $O P, O Q$ and $O R$, respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.

Solution In figure, $A B \| P Q$
(Given)
$\Rightarrow \quad \frac{O A}{A P}=\frac{O B}{B Q}$
(Basic proportionality theorem)
Also, in figure,
$A C \| P R$
$\frac{O A}{A P}=\frac{O C}{C R}$
(Basic proportionality theorem)
From Eqs. (i) and (ii), we get

$$
\begin{array}{ll}
& \frac{O B}{B Q}=\frac{O C}{C R} \\
\Rightarrow \quad & B C \| Q R \\
& \text { (Converse of basic proportionality theorem) }
\end{array}
$$

Question 7. Using theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (recall that you have proved it in Class IX).
Solution $\ln \triangle A B C, D$ is the mid-point of $A B$.
i.e.,

$$
\begin{equation*}
\frac{A D}{D B}=1 \tag{i}
\end{equation*}
$$

As straight line / \| $B C$.
Line / is drawn through D and it meets $A C$ at E.
By basic proportionality theorem,

$$
\begin{array}{ll}
\Rightarrow & \frac{A D}{D B}=\frac{A E}{E C} \\
\Rightarrow & \frac{A E}{E C}=1 \quad[\text { From Eq. (i) }] \\
\Rightarrow & A E=E C \Rightarrow \frac{A E}{E C}=1
\end{array}
$$

$\Rightarrow E$ is the mid-point of $A C$.
Hence proved.
Question 8. Using theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (recall that you done it in Class IX).

Solution In $\triangle A B C, D$ and E are mid-points of side $A B$ and $A C$, respectively.

$\Rightarrow \quad \frac{A D}{D B}=1$ and $\frac{A E}{E C}=1 \quad$ (See in figure)
$\Rightarrow \quad \frac{A D}{D B}=\frac{A E}{E C} \Rightarrow D E \| B C$
(By converse of basic proportionality theorem)
Question 9. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point 0 . Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

Solution

We draw,
$E O F \| A B$
(Also || CD)
In $\triangle A C D$,
\Rightarrow
In $\triangle A B D$,
\Rightarrow
\Rightarrow
$O E \| C D$
$\frac{A E}{E D}=\frac{A O}{O C}$ (Basic proportionality theorem) ...(i)
$O E \| B A$
\triangle
$\frac{D E}{E A}=\frac{D O}{O B} \quad$ (Basic proportionality theorem)
$\frac{A E}{E D}=\frac{O B}{O D}$
From Eqs. (i) and (ii), we get
i.e.,

$$
\begin{aligned}
& \frac{A O}{O C}=\frac{O B}{O D} \\
& \frac{A O}{B O}=\frac{C O}{D O}
\end{aligned}
$$

Hence proved.
Question 10. The diagonals of a quadrilateral $A B C D$ intersect each other at the point 0 such $\frac{A O}{B O}=\frac{C O}{D O}$. Show that $A B C D$ is a trapezium.

Solution In figure,
\Rightarrow

$$
\frac{A O}{O C}=\frac{B O}{O D}
$$

Through O, we draw
$O E$ meets $A D$ at E.
$\begin{array}{ll}\text { In } \triangle D A B, & E O \| A B \\ \Rightarrow & \frac{D E}{E A}=\frac{D O}{O B} \\ \Rightarrow & \frac{A E}{E D}=\frac{B O}{O D}\end{array}$

$$
\frac{A O}{B O}=\frac{C O}{D O}
$$

$O E \| B A$

$$
\begin{align*}
& \frac{D E}{E A}=\frac{D O}{O B} \\
& \frac{A E}{E D}=\frac{B O}{O D} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get

$$
\frac{A O}{O C}=\frac{A E}{E D}
$$

$\Rightarrow \quad O E \| C D$
(By converse of basic proportionality theorem)
Now, we have

$$
B A \| O E \text { and } O E\|C D \Rightarrow A B\| C D
$$

\Rightarrow Quadrilateral $A B C D$ is a trapezium.
Hence proved.

4 Triangles

Exercise 4.3

Question 1. State which pairs of triangles in figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Solution (i) Yes. In $\triangle A B C$ and $\triangle P Q R$,

$$
\angle A=\angle P=60^{\circ}, \angle B=\angle Q=80^{\circ}
$$

and

$$
\angle C=\angle R=40^{\circ}
$$

Here, corresponding angles are equal.
Therefore, $\quad \triangle A B C \sim \triangle P Q R$
(By AAA similarity criterion)
(ii) Yes. In $\triangle A B C$ and $\triangle P Q R$,

$$
\frac{A B}{Q R}=\frac{2}{4}=\frac{1}{2}, \frac{B C}{R P}=\frac{2.5}{5}=\frac{1}{2}
$$

and

$$
\frac{C A}{P Q}=\frac{3}{6}=\frac{1}{2}
$$

Here, all corresponding sides are equal in proportional.
Therefore,
$\Delta A B C \sim \Delta Q R P$
(By SSS similarity criterion)
(iii) No. In $\triangle L M P$ and $\triangle D E F$

$$
\begin{aligned}
\frac{M P}{D E}=\frac{2}{4}=\frac{1}{2}, \frac{L P}{D F} & =\frac{3}{6}=\frac{1}{2} \text { and } \frac{L M}{E F}=\frac{2.7}{5} \neq \frac{1}{2} \\
\text { i.e., } \quad \frac{M P}{D E} & =\frac{L P}{D F} \neq \frac{L M}{E F}
\end{aligned}
$$

Here, all corresponding sides are not equal in proportional.
Thus, the two triangles are not similar.
(iv) Yes. In $\triangle L M N$ and $\triangle P Q R$

$$
\begin{aligned}
\angle M=\angle Q=70^{\circ}, \frac{M N}{P Q} & =\frac{3}{6}=\frac{1}{2} \text { and } \frac{M L}{Q R}=\frac{5}{10}=\frac{1}{2} \\
\text { i.e., } & \frac{M N}{P Q}=\frac{M L}{O R}
\end{aligned}
$$

Here, corresponding two adjacent sides are in proportional and one angle is equal.
Therefore, $\quad \triangle M N L \sim \triangle Q P R \quad$ (By SAS similarity criterion)
(v) No. In $\triangle A B C, \angle A$ is given but the included side $A C$ is not given.
(vi) Yes. $\angle D=70^{\circ}, \angle E=80^{\circ}$ and $\angle F=30^{\circ}$

$$
\left(\because \ln \triangle D E F, \angle D+\angle E+\angle F=180^{\circ}\right)
$$

$$
\angle Q=80^{\circ}, \angle R=30^{\circ} \text {, then } \angle P=70^{\circ}
$$

$$
\left(\because \ln \triangle Q P R, \angle Q+\angle P+\angle R=180^{\circ}\right)
$$

Here,

$$
\angle D=\angle P, \angle E=\angle Q, \angle F=\angle R
$$

Therefore,

$$
\Delta D E F \sim \Delta P Q R
$$

(By AAA similarity criterion)
Question 2. In figure, $\triangle O D C \sim \triangle O B A, \angle B O C=125^{\circ}$ and $\angle C D O=70^{\circ}$. Find $\angle D O C, \angle D C O$ and $\angle O A B$.

Solution

$\angle D O C+125^{\circ}=180^{\circ} \quad(\because D O C$ is a straight line $)$
\Rightarrow

$$
\angle D O C=180^{\circ}-125^{\circ}=55^{\circ}
$$

$$
\angle D C O+\angle C D O+\angle D O C=180^{\circ}
$$

(Sum of three angles of $\triangle O D C$)
$\Rightarrow \quad \angle D C O+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle D C O+125^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle D C O=180^{\circ}-125^{\circ}=55^{\circ}$
Now, we are given that, $\triangle O D C \sim \triangle O B A$.
(Similar triangle)

$$
\begin{array}{ll}
\Rightarrow & \angle O C D=\angle O A B \\
\Rightarrow & \angle O A B=\angle O C D=\angle D C O=55^{\circ} \\
\text { i.e., } & \angle O A B=55^{\circ}
\end{array}
$$

Hence, we have $\angle D O C=55^{\circ}, \angle D C O=55^{\circ}$ and $\angle O A B=55^{\circ}$.
Question 3. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other the point 0 . Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

Solution Draw $A B C D$ is a trapezium and $A C$ and $B D$ are diagonals intersect at O.

In figure,
\Rightarrow
Also,
\Rightarrow
\Rightarrow
$A B \| D C$
(Given)
$\angle 1=\angle 3, \angle 2=\angle 4 \quad$ (Alternate interior angles)
$\angle D O C=\angle B O A \quad$ (Vertically opposite angles)
$\triangle O C D \sim \triangle O A B$
(Similar triangle)
(Ratios of the corresponding sides of the similar triangles)
$\Rightarrow \quad \frac{O A}{O C}=\frac{O B}{O D}$
(Taking reciprocals)
Hence proved.
Question 4. In figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$, show that $\triangle P Q S \sim \triangle T Q R$.

Solution In figure,

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& P Q=P R
\end{aligned}
$$

(Given)
(Sides opposite to equal angles of $\triangle P Q R$)
We are given that,

$$
\begin{array}{lll}
& \frac{Q R}{Q S}=\frac{Q T}{P R} \\
\Rightarrow & \frac{Q R}{Q S}=\frac{Q T}{P Q} & (\because P Q=P R \text { proved) } \\
\Rightarrow & \frac{Q S}{Q R}=\frac{P Q}{Q T} & \text { (Taking reciprocals) } \ldots \text { (i) }
\end{array}
$$

Now, in $\triangle P Q S$ and $\triangle T Q R$, we have

$$
\begin{align*}
\angle P Q S & =\angle T Q R \\
\frac{Q S}{Q R} & =\frac{P Q}{Q T} \tag{i}
\end{align*}
$$

and
Therefore, by SAS similarity criterion, we have $\triangle P Q S \sim \triangle T Q R$.

Question 5. S and T are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.

Solution Draw a $\triangle R P Q$ such that S and T are points on $P R$ and $Q R$ and joining them.
In figure, we have $\triangle R P Q$ and $\Delta R T S$ in which

$$
\begin{array}{lr}
\angle R P Q=\angle R T S & \text { (Given) } \\
\angle P R Q=\angle S R T & \text { (Each }=\angle R)
\end{array}
$$

Then, by AAA similarity criterion, we have

$$
\Delta R P Q \sim \Delta R T S
$$

Note If any two corresponding angles of the triangles are
 equal, then their third corresponding angles are also equal by $A A A$.

Question 6. In figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Solution In figure, $\triangle A B E \cong \triangle A C D$

$$
\begin{array}{ll}
\Rightarrow & A B=A C \text { and } A E=A D \\
\Rightarrow & \frac{A B}{A C}=1 \text { and } \frac{A D}{A E}=1 \\
\Rightarrow & \frac{A B}{A C}=\frac{A D}{A E}
\end{array}
$$

Now, in $\triangle A D E$ and $\triangle A B C$, we have

	$\frac{A D}{A E}$	$=\frac{A B}{A C}$
i.e.,	$\frac{A D}{A B}$	$=\frac{A E}{A C}$
and also,	$\angle D A E$	$=\angle B A C$
Hence proved.		

Question 7. In figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that
(i) $\triangle A E P \sim \triangle C D P$
(ii) $\triangle A B D \sim \triangle C B E$
(iii) $\triangle A E P \sim \triangle A D B$
(iv) $\triangle P D C \sim \triangle B E C$

Solution (i) In figure,
$\angle A E P=\angle C D P$
and
\Rightarrow
(ii) In figure,
and
\Rightarrow
(iii) In figure, and
\Rightarrow
(iv) In figure,
and
\Rightarrow
$\angle A P E=\angle C P D$
$\angle A E P \sim \triangle C D P$
$\angle A D B=\angle C E B$
$\angle A B D=\angle C B E$
$\triangle A B D \sim \triangle C B E$
$\angle A E P=\angle A D B$
$\angle P A E=\angle D A B$
$\triangle A E P \sim \triangle A D B$
$\angle P D C=\angle B E C$
$\angle P C D=\angle B C E$
$\triangle P D C \sim \triangle B E C$
(Each $\left.=90^{\circ}\right)$
(Vertically opposite angles)
(By AAA similarity criterion)
(Each $=90^{\circ}$)
$($ Each $=\angle B)$
(By AAA similarity criterion)
$\left(\right.$ Each $\left.=90^{\circ}\right)$
(Common angle)
(By AAA similarity criterion)
(Each $\left.=90^{\circ}\right)$
(Common angle)
(By AAA similarity criterion)

Question 8. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$.

Solution Draw a parallelogram $A B C D$ and produce a line $A D$ to $A E$ and joining $B E$.

In parallelogram $A B C D$,

$$
\begin{equation*}
\angle A=\angle C \tag{i}
\end{equation*}
$$

Now, for $\triangle A B E$ and $\triangle C F B$, we have

$$
\begin{array}{ll}
& \angle E A B=\angle B C F \\
\Rightarrow & \angle A B E=\angle B F C \\
& \triangle A B E \sim \Delta C F B
\end{array}
$$

Question 9. In figure, $A B C$ and $A M P$ are two right triangles, right angled at B and M, respectively. Prove that
(i) $\triangle A B C \sim \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

Solution (i) In figure, we have $\angle A B C=\angle A M P$
Because the $\triangle A B C$ and $\triangle A M P$ are right angled at B and M, respectively.
Also,
$\angle B A C=\angle P A M$
(Common angle $\angle A$)
\Rightarrow
$\triangle A B C \sim \triangle A M P$
(By AAA similarity criterion)
(ii) As $\triangle A B C \sim \triangle A M P$,

$$
\frac{A C}{A P}=\frac{B C}{M P}
$$

(Ratio of the corresponding sides of similar triangles)
$\Rightarrow \quad \frac{C A}{P A}=\frac{B C}{M P} \quad$ Hence proved.
Question 10. $C D$ and $G H$ are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$, respectively. If $\triangle A B C \sim \triangle F E G$. Show that
(i) $\frac{C D}{G H}=\frac{A C}{F G}$
(ii) $\triangle D C B \sim \triangle H G E$
(iii) $\triangle D C A \sim \Delta H G F$

Solution Draw two $\triangle A B C$ and $\triangle E F G$ along that draw two bisectors $C D$ and $G H$ of $\angle A C B$ and $\angle E G F$.

Since,

$$
\Delta A B C \sim \Delta F E G
$$

(i) In $\triangle A C D$ and $\triangle F G H$

$$
\begin{gather*}
\angle C A D=\angle G F H \tag{i}\\
\left\{\begin{array}{l}
\because A B C \sim \triangle F E G \\
\therefore \angle C A B=\angle G F E \\
\Rightarrow \angle C A D=\angle G F H
\end{array}\right.
\end{gather*}
$$

$$
\begin{gather*}
\angle A C D=\angle F G H \tag{ii}\\
\left\{\begin{array}{l}
\because \triangle A B C \sim \triangle F E G \\
\therefore \angle A C B=\angle F G E \\
\Rightarrow
\end{array}\right. \\
\left\{\begin{array}{l}
\frac{1}{2} \angle A C B=\frac{1}{2} \angle F G E
\end{array}\right. \\
\left\{\begin{array}{l}
\text { Halves of equals are equal } \\
\Rightarrow \angle A C D=\angle F G H
\end{array}\right.
\end{gather*}
$$

From Eqs. (i) and (ii), we get

$$
\begin{array}{rlrl}
& \Delta A C D & \sim \Delta F G H & (\because \text { AA similarity criterion }) \\
\therefore & \frac{C D}{G H} & =\frac{A C}{F G} \\
& & (\because \text { Corresponding sides of two similar triangles are proportional })
\end{array}
$$

(ii) In $\triangle D C B$ and $\triangle H G E$,

$$
\begin{gather*}
\quad \angle D B C=\angle H E G \tag{iii}\\
\left\{\begin{array}{l}
\because \angle A B C \sim \triangle F E G \\
\therefore \angle A B C=\angle F E G \\
\Rightarrow \\
\\
\quad \angle D B C=\angle H E B=\angle H G E
\end{array}\right. \\
\begin{cases}\because & \angle A B C \sim \triangle F E G \\
\because & \angle A C B=\angle F G E \\
\Rightarrow & \frac{1}{2} \angle A C B=\frac{1}{2} \angle F G E\end{cases} \tag{iv}\\
\quad \text { (Hali) } \\
\end{gather*}
$$

From Eqs. (i) and (i), we get
(i) $\triangle D C B$ and $\triangle H G E$

$$
\Rightarrow \quad \angle D C B=\angle H G E
$$

From Eqs. (iii) and (iv), we get

$$
\triangle D C B \sim \triangle H G E \quad(\because \text { AA similarity criterion })
$$

(iii) In $\triangle D C A$ and $\triangle H G F$,

$$
\begin{align*}
& \angle D A C=\angle H F G \tag{v}\\
& \because \because \triangle A B C \sim \triangle F E G \\
& \therefore \angle C A B=\angle G F E \tag{vi}\\
& \Rightarrow \angle C A D=\angle G F H \\
& \Rightarrow \angle D A C=\angle H F G
\end{aligned} \quad \begin{aligned}
& \angle D C A=\angle H G F \\
& \because \triangle A B C \sim \Delta F E G, \quad \therefore \angle A C B=\angle F G E \\
& \Rightarrow \frac{1}{2} \angle A C B=\frac{1}{2} \angle F G E \quad \text { (Halves equals are equal) } \\
& \Rightarrow \angle D C A=\angle H G F
\end{align*}
$$

From Eqs. (v) and (vi), we get

$$
\triangle D C A \sim \triangle H G F \quad(\because \text { AA similarity criterion })
$$

Question 11. In figure, E is a point on side $C B$ produced of an isosceles $\triangle A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$.

Solution In figure, we are given that $\triangle A B C$ is isosceles
and

$$
\begin{equation*}
A B=A C \Rightarrow \angle B=\angle C \tag{i}
\end{equation*}
$$

For $\triangle A B D$ and $\triangle E C F$,
[From Eq. (i)]
and

$$
\begin{aligned}
& \angle A B D=\angle E C F \\
& \angle A D B=\angle E F C \\
& \triangle A B D \sim \triangle E C F
\end{aligned}
$$

$$
\left[\text { Each }=90^{\circ}\right]
$$

(AAA similarity criterion)
Question 12. Sides $A B$ and $B C$ and median $A D$ of a $\triangle A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Solution Given in $\triangle A B C$ and $\triangle P Q R$,
$A D$ and $P M$ are their medians, respectively.

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M} \tag{i}
\end{equation*}
$$

To prove
$\triangle A B C \sim \triangle P Q R$
Construction Produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$. Join $B E, C E, Q N$ and $R N$.

Proof Quadrilaterals $A B E C$ and $P Q N R$ are parallelograms because their diagonals bisect each other at D and M, respectively.

\Rightarrow	$B E=A C$
and	$Q N=P R$
\Rightarrow	$\frac{B E}{Q N}=\frac{A C}{P R}$
\Rightarrow	$\frac{B E}{Q N}=\frac{A B}{P Q}$
i.e.,	$\frac{A B}{P Q}=\frac{B E}{Q N}$

From Eq. (i),

$$
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 A D}{2 P M}=\frac{A E}{P N}
$$

(\because Diagonals are bisect each other)
i.e.,

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A E}{P N} \tag{iii}
\end{equation*}
$$

From Eqs. (ii) and (iii), we have

$$
\begin{array}{rlrl}
& \frac{A B}{P Q} & =\frac{B E}{Q N}=\frac{A E}{P N} \\
\Rightarrow & \triangle A B E & \sim \Delta P Q N \\
\Rightarrow & \angle 1=\angle 2 \tag{iv}
\end{array}
$$

Similarly, we can prove

$$
\begin{equation*}
\triangle A C E \sim \triangle P R N \Rightarrow \angle 3=\angle 4 \tag{v}
\end{equation*}
$$

On adding Eqs. (iv) and (v), we have

$$
\begin{aligned}
\angle 1+\angle 3 & =\angle 2+\angle 4 \\
\angle A & =\angle P \\
\triangle A B C & \sim \triangle P Q R \quad \text { (SAS similarity criterion) }
\end{aligned}
$$

Question 13. D is point on the side $B C$ of a $\triangle A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B \cdot C D$.

Solution Draw a $\triangle A B C$ such that D is a point on $B C$ and join $A D$.

For $\triangle A B C$ and $\triangle D A C$, we have

$$
\begin{array}{llr}
& \angle B A C=\angle A D C & \text { (Given) } \tag{Given}\\
\text { and } & \angle A C B=\angle D C A & \text { (Common } \angle C \text {) } \\
\Rightarrow & \triangle A B C \sim \triangle D A C & \text { (AAA similarity criterion) } \\
\Rightarrow & \frac{A C}{C B}=\frac{C D}{C A} &
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{C A}{C D}=\frac{C B}{C A} \\
\Rightarrow & C A \times C A=C B \times C D \\
\Rightarrow & C A^{2}=C B \times C D
\end{array}
$$

Question 14. Sides $A B$ and $A C$ and median $A D$ of a $\triangle A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another $\triangle P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.

Solution Given, in $\triangle A B C$ and $\triangle P Q R$,
$A D$ and $P M$ are their medians, respectively.
Also,

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{A D}{P M} \tag{i}
\end{equation*}
$$

To prove

$\triangle A B C \sim \triangle P Q R$

Construction Produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$. Join $B E, C E, Q N$ and $R N$.

Proof Quadrilaterals $A B E C$ and $P Q N R$ are parallelograms because their diagonals bisect each other at D and M, respectively.

\Rightarrow	$B E=A C$
and	$Q N=P R$
\Rightarrow	$\frac{B E}{Q N}=\frac{A C}{P R}$
\Rightarrow	$\frac{B E}{Q N}=\frac{A B}{P Q}$
	$A B$
	$B E$

i.e.,
$\frac{A B}{P Q}=\frac{B E}{Q N}$
From Eq. (i),

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 A D}{2 P M}=\frac{A E}{P N} \tag{ii}
\end{equation*}
$$

(\because Diagonals are bisect each other)
i.e.,

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A E}{P N} \tag{iii}
\end{equation*}
$$

From Eqs. (ii) and (iii), we have

$$
\begin{array}{rlrl}
& & \frac{A B}{P Q} & =\frac{B E}{Q N}=\frac{A E}{P N} \\
\Rightarrow & \Delta A B E & \sim \Delta P Q N \\
\Rightarrow & \angle 1 & =\angle 2
\end{array}
$$

Similarly, we can prove that

$$
\begin{gather*}
\triangle A C E \sim \triangle P R N \\
\angle 3=\angle 4 \tag{v}
\end{gather*}
$$

On adding Eqs. (iv) and (v), we have

$$
\begin{aligned}
& & \angle 1+\angle 3 & =\angle 2+\angle 4 \\
\Rightarrow & \angle A & =\angle P & \\
\Rightarrow & \triangle A B C & \sim \Delta P Q R & \text { (SAS similarity criterion) }
\end{aligned}
$$

Question 15. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Solution In figure (i), $A B$ is a pole and behind it a Sun is risen which casts a shadow of length $B C=4 \mathrm{~cm}$ and makes a angle θ to the horizontal and in figure ii, $P M$ is a height of the tower and behind a Sun risen which casts a shadow of length, $N M=28 \mathrm{~cm}$.
In $\triangle A C B$ and $\triangle P N M$,
and
$\angle C=\angle N=\theta$
and
$\angle A B C=\angle P M N=90^{\circ}$
$\therefore \quad \triangle A B C \sim \triangle P M N \quad$ (AAA similarity criterion)
$\Rightarrow \quad \frac{A B}{P M}=\frac{B C}{M N} \Rightarrow \frac{A B}{B C}=\frac{P M}{M N}$
$\Rightarrow \quad \frac{6}{4}=\frac{h}{28} \Rightarrow h=\frac{6 \times 28}{4}=42 \mathrm{~m}$

(i)

(ii)

Question 16. If $A D$ and $P M$ are medians of $\triangle A B C$ and $\triangle P Q R$, respectively, where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

Solution Draw two $\triangle A B C$ and $\triangle P Q R$ taking D and M points on $B C$ and $Q R$ such that $A D$ and $P M$ are the medians of the $\triangle A B C$ and $\triangle P Q R$.

$\Rightarrow \quad \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} ; \angle A=\angle P, \angle B=\angle Q, \angle C=\angle R$
(Given)

Now,

$$
\begin{align*}
& B D=C D=\frac{1}{2} B C \tag{i}\\
& Q M=R M=\frac{1}{2} Q R \tag{ii}
\end{align*}
$$

and
$(\because D$ is mid-point of $B C$ and M is mid-point of $Q R$)
From Eq. (i),

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

$\Rightarrow \quad \frac{A B}{P Q}=\frac{2 B D}{2 Q M}$
[By Eq. (ii)]
$\Rightarrow \quad \frac{A B}{P Q}=\frac{B D}{Q M}$
Thus, we have

$$
\frac{A B}{P Q}=\frac{B D}{Q M}
$$

and
$\angle A B D=\angle P Q N$
$(\because \angle B=\angle Q)$
\Rightarrow
$\triangle A B D \sim \triangle P Q M$
(by SAS similarity criterion)
$\Rightarrow \quad \frac{A B}{P Q}=\frac{A D}{P M}$

4 Triangles

Exercise 4.4

Question 1. Let $\triangle A B C \sim \triangle D E F$ and their areas be, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$, respectively. If $E F=15.4 \mathrm{~cm}$, find $B C$.

Solution

$\triangle A B C \sim \Delta D E F$
(Given)
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\begin{array}{ll} & \text { (Using property of area of similar triangles) } \\ \Rightarrow & \frac{64}{121}=\frac{B C^{2}}{E F^{2}} \\ \Rightarrow & \left(\frac{B C}{E F}\right)^{2}=\left(\frac{8}{11}\right)^{2} \Rightarrow \frac{B C}{E F}=\frac{8}{11} \\ \Rightarrow & B C=\frac{8}{11} \times E F \\ \Rightarrow & B C=\frac{8}{11} \times 15.4=11.2 \mathrm{~cm}\end{array}$
Question 2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point 0 . If $A B=2 C D$. Find the ratio of the area of $\triangle A O B$ and $\triangle C O D$.

Solution

$$
\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{C D^{2}}
$$

(Using property of area of similar triangles)

$$
\begin{aligned}
& =\frac{(2 C D)^{2}}{C D^{2}} \\
& \quad(\because A B=2 C D) \\
& =\frac{4 \times C D^{2}}{C D^{2}}=\frac{4}{1}
\end{aligned}
$$

Question 3. In figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$ intersects $B C$ at 0 , show that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A 0}{D O}$.

Solution

Draw $A L \perp B C$ and $D M \perp B C$
(See figure)
In \triangle OLA and $\triangle O M D$

	$\angle A L O$	$=\angle D M O=90^{\circ}$		
and	$\angle A O L$	$=\angle D O M$	\quad	(Vertically opposite angle)
:---				
\therefore	$\quad \Delta O L A \sim \Delta O M D \quad$ (AAA similarity criterion)			

Question 4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution Let $\triangle A B C \sim \triangle P Q R$ and $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle P Q R)$

i.e.,

$$
\Rightarrow
$$

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)} & =1 \\
\frac{A B^{2}}{P Q^{2}} & =\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{P R^{2}}=1
\end{aligned}
$$

(Using property of area of similar triangles)
$\Rightarrow \quad A B=P Q, B C=Q R$ and $C A=P R$
(SSS proportionality criterion)
$\Rightarrow \quad \triangle A B C \cong \triangle P Q R$.

Question 5. $\quad D, E$ and F are respectively the mid-point of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

Solution Draw a $\triangle A B C$ taking mid-points D, E and F on $A B, B C$ and $A C$ and join them.

Here,

$$
D F=\frac{1}{2} B C, D E=\frac{1}{2} C A
$$

and

$$
\begin{equation*}
E F=\frac{1}{2} A B \tag{i}
\end{equation*}
$$

$$
\begin{array}{ll}
& (\because D, E \text { and } F \text { are mid-points of sides } A B, B C \text { and } C A, \text { respectively) } \\
\Rightarrow & \frac{D F}{B C}=\frac{D E}{C A}=\frac{E F}{A B}=\frac{1}{2} \quad(\text { SSS proportionality criterion }) \\
\Rightarrow & \Delta D E F \sim \Delta C A B \\
\Rightarrow & \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle C A B)}=\frac{D E^{2}}{C A^{2}}
\end{array}
$$

$$
\begin{equation*}
=\frac{\left(\frac{1}{2} C A\right)^{2}}{C A^{2}}=\frac{1}{4} \tag{i}
\end{equation*}
$$

(Using property of area of similar triangle)

$$
\Rightarrow \quad \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{4} \quad[\because \operatorname{ar}(\triangle C A B)=\operatorname{ar}(\triangle A B C)]
$$

Hence, the required ratio is $1: 4$.
Question 6. Prove that the ratio of the area of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution

In figure, $A D$ is a median of $\triangle A B C$ and $P M$ is a median of $\triangle P Q R$. Here, D is mid-point of $B C$ and M is mid-point of $Q R$.
Now, we have,

In figure, $A D$ is a median of $\triangle A B C$ and $P M$ is a median of $\triangle P Q R$. Here, D is mid-point of $B C$ and M is mid-point of $Q R$.
Now, we have,

$$
\begin{align*}
& \Delta A B C \sim \Delta P Q R \\
\Rightarrow & \angle B=\angle Q \tag{i}
\end{align*}
$$

(Corresponding angles are equal)

$$
\begin{array}{ll}
\text { Also, } & \frac{A B}{P Q}=\frac{B C}{Q R} \\
& \\
\Rightarrow & \frac{A B}{P Q}=\frac{2 B D}{2 Q M} \\
\Rightarrow & (\because D \text { is mid-point of } B C \text { and } M \text { is mid-point of } Q R \text {) } \\
\Rightarrow & \frac{A B}{P Q}=\frac{B D}{Q M}
\end{array}
$$

In $\triangle A B D$ and $\triangle P Q M$,

and	$\begin{aligned} \angle A B D & =\angle P Q N \\ \frac{A B}{P Q} & =\frac{B D}{Q M} \end{aligned}$	$\begin{gathered} \text { [By Eq. (i)] } \\ \text { [By Eq. (ii)] } \end{gathered}$
\Rightarrow	$\triangle A B D \sim \triangle P Q M$	(SAS similarity criterion)
\Rightarrow	$\frac{A B}{P Q}=\frac{A D}{P M}$	(iii)
Now,	$\begin{aligned} \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}= & \frac{A B^{2}}{P Q^{2}} \\ & (\text { Using } \end{aligned}$	area of similar triangles)
\Rightarrow	$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}$	[From Eq. (iii)]

Question 7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution

Draw $A B C D$ is a square having sides of length $=a$
Then, the diagonal, $B D=a \sqrt{2}$
We construct equilateral $\triangle P A B$ and $\triangle Q B D$.

$$
\begin{array}{rlr}
\Rightarrow \quad & \quad \triangle P A B \sim \triangle Q B D & \text { (Equilateral triangles are similar) } \\
\Rightarrow \quad & \quad \text { (Using property of area of similar triangles) } \\
\Rightarrow & =\frac{a a^{2}(\triangle P A B)}{\left(a \sqrt{2}^{2}\right)^{2}}=\frac{1}{2} \Rightarrow \operatorname{ar}(\triangle P A B)=\frac{1}{2} \text { ar }(\triangle Q B D)
\end{array}
$$

Hence proved.
Question 8. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the area of $\triangle A B C$ and $\triangle B D E$ is
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$
(d) $1: 4$

Solution (c)

Here,

$$
\begin{equation*}
A B=B C=C A=a \tag{Say}
\end{equation*}
$$

$(\because \triangle A B C$ is an equilateral)

$$
B D=\frac{1}{2} a \quad(\because D \text { is mid-point of } B C)
$$

Now,
$\triangle A B C \sim \triangle B D E \quad(\because$ Both the triangles are equilateral $)$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{A B^{2}}{B D^{2}}$
(Using property of area of similar to triangles)

$$
=\frac{a^{2}}{\left(\frac{1}{2} a\right)}=\frac{4}{1}
$$

i.e., The ratio is $4: 1$.

Question 9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(a) $2: 3$
(b) $4: 9$
(c) $81: 16$
(d) $16: 81$

Solution (d)

Areas of two similar triangles are in the ratio of the square of their corresponding sides

$$
=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}
$$

4 Triangles

Exercise 4.5

Question 1. Sides of some triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$

Solution We know that, in right triangle, sum of squares of two smaller sides is equal to the square of the third (large) side.
(i) Here, $(7)^{2}+(24)^{2}=49+576=625=(25)^{2}$

Therefore, given sides $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm make a right triangle and length of its hypotenuse is 25 cm .
(ii) Here, $(3)^{2}+(6)^{2}=9+36=45$ and $(8)^{2}=64$. Both values are not equal. Therefore, given sides $3 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm does not make a right triangle.
(iii) Here, $(50)^{2}+(80)^{2}=2500+6400=8900$ and $(100)^{2}=10000$. Both values are not equal.
Therefore, given sides $50 \mathrm{~cm}, 80 \mathrm{~cm}$ and 100 cm does not make a right triangle.
(iv) Here, $(12)^{2}+(5)^{2}=144+25=169=(13)^{2}$

Therefore, given sides $13 \mathrm{~cm}, 12 \mathrm{~cm}$ and 5 cm make a right triangle and length of its hypotenuse is 13 cm .

Question 2. $P Q R$ is a triangle right rangled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M \times M R$.

Solution $\ln \triangle P Q R$ and $\triangle M P Q$,

$$
\begin{array}{lcc}
& \angle 1+\angle 2=\angle 2+\angle 4 & \left(\text { Each }=90^{\circ}\right) \\
\Rightarrow & \angle 1=\angle 4 & \\
\text { Similarly, } & \angle 2=\angle 3 &
\end{array}
$$

and

$$
\angle P M R=\angle P M Q
$$

(Each 90°)
(AAA criterion)
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle Q P M)}{\operatorname{ar}(\triangle P R M)}=\frac{P M^{2}}{R M^{2}}$
(Using property of area of similar triangles)
$\Rightarrow \quad \frac{\frac{1}{2}(Q M) \times(P M)}{\frac{1}{2}(R M) \times(P M)}=\frac{P M^{2}}{R M^{2}}$
(Area of a triangle $=\frac{1}{2} \times$ Base \times Height)
$\Rightarrow \quad \frac{Q M}{R M}=\frac{P M^{2}}{R M^{2}}$
$\Rightarrow \quad P M^{2}=Q M \times R M$
or
$P M^{2}=Q M \times M R$
Hence proved.
Question 3. In figure, $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that

(i) $A B^{2}=B C \cdot B D$
(ii) $A C^{2}=B C \cdot D C$
(iii) $A D^{2}=B D \cdot C D$

Solution As proved in above question,

$$
\triangle A B C \sim \triangle D A C \sim \triangle D B A
$$

(i) $\triangle A B C \sim \triangle D B A$

Then,

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B A}=\frac{A B^{2}}{D B^{2}}
$$

(Using property of area of similar triangles)
$\Rightarrow \quad \frac{\frac{1}{2}(B C) \times(A C)}{\frac{1}{2}(B D) \times(A C)}=\frac{A B^{2}}{D B^{2}}$
(Area of triangle $=\frac{1}{2} \times$ Base \times Height)
$\Rightarrow \quad A B^{2}=B C \cdot B D$
(ii) $\triangle A B C \sim \triangle D A C$

$$
\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D A C)}=\frac{A C^{2}}{D C^{2}}
$$

(Using property of area of similar triangles)

$$
\Rightarrow \quad \frac{\frac{1}{2}(B C) \times(A C)}{\frac{1}{2}(D C) \times(A C)}=\frac{A C^{2}}{D C^{2}}
$$

$$
\text { (Area of triangle }=\frac{1}{2} \times \text { Base } \times \text { Height) }
$$

$$
\Rightarrow \quad A C^{2}=B C \cdot D C
$$

(iii) $\triangle D A C \sim \triangle D B A$

$$
\Rightarrow \quad \frac{\operatorname{ar}(\triangle D A C)}{\operatorname{ar}(\triangle D A C)}=\frac{D A^{2}}{D B^{2}}
$$

(Using property of area of similar triangles)
$\Rightarrow \quad \frac{\frac{1}{2}(C D) \times(A C)}{\frac{1}{2}(B D) \times(A C)}=\frac{A D^{2}}{B D^{2}}$
(Area of triangle $=\frac{1}{2} \times$ Base \times Height)
$\Rightarrow \quad A D^{2}=B D \cdot C D$
Hence proved.
Question 4. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

Solution Draw $A B C$ is an isosceles triangle right angled at C.
and

$$
\begin{equation*}
A C=B C \tag{i}
\end{equation*}
$$

By Pythagoras theorem, we have

$$
A B^{2}=A C^{2}+B C^{2}=A C^{2}+A C^{2}=2 A C^{2} \quad[\because B C=A C \text { by Eq. (i) }]
$$ Hence proved.

Question 5. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
Solution Draw an isosceles $\triangle A B C$ with $A C=B C$.

In $\triangle A B C$, we are given that
i.e.,

$$
A C^{2}+B C^{2}=A B^{2}
$$

Hence, by the converse of the Pythagoras theorem, we have $\triangle A B C$ is right angled at C.
Question 6. $A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.
Solution Draw equilateral $\triangle A B C$, each side is $2 a$.
Also, draw $A D \perp B C$.
Where $A D$ is an altitude.
In $\triangle A D B$ and $\triangle A D C$
and

$$
A D=A D
$$

(Common)

$$
\angle A D B=\angle A D C=90^{\circ}
$$

$$
\Delta A D B \cong \triangle A D C
$$

(RHS congruency)
$\Rightarrow \quad B D=C D=\frac{1}{2} B C=a$
(\because in an equilateral triangle altitude $A D$ is the perpendicular bisector of $B C$).
Now, from $\triangle A B D$ by Pythagoras theorem, we get

$$
\begin{array}{ll}
& A B^{2}=A D^{2}+B D^{2} \\
\Rightarrow & (2 a)^{2}=A D^{2}+a^{2} \\
\Rightarrow & A D^{2}=3 a^{2} \\
\Rightarrow & A D=\sqrt{3} a
\end{array}
$$

Question 7. Prove that the sum of the square of the sides of a rhombus is equal to the sum of the squares of its diagonals.
Solution Draw $A B C D$ is a rhombus in which $A B=B C=C D=D A=a$
Its diagonal $A C$ and $B D$ are right angled bisector of each other at O.

In $\triangle O A B, \angle A O B=90^{\circ}$,

$$
\begin{align*}
& A C=B C \tag{i}\\
& A B^{2}=2 A C^{2} \tag{ii}\\
& \quad \text { Now, } \quad A C^{2}+B C^{2}=A C^{2}+A C^{2} \tag{i}\\
& =2 A C^{2}=A B^{2} \tag{ii}
\end{align*}
$$

$$
O A=\frac{1}{2} A C \text { and } O B=\frac{1}{2} B D
$$

In $\triangle A O B$, use Pythagoras theorem, we have

$$
O A^{2}+O B^{2}=A B^{2}
$$

$$
\begin{array}{rlrl}
& \Rightarrow & \left(\frac{1}{2} A C\right)^{2}+\left(\frac{1}{2} B D\right)^{2} & =A B^{2} \\
\Rightarrow & A C^{2}+B D^{2} & =4 A B^{2} \\
& \text { or } & 4 A B^{2} & =A C^{2}+B D^{2} \\
\Rightarrow & A B^{2}+B C^{2}+C D^{2}+D A^{2} & =A C^{2}+B D^{2} \quad(\because A B=B C=C D=D A)
\end{array}
$$ Hence proved.

Question 8. In figure, 0 is a point in the interior of a $\triangle A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that

(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

Solution In $\triangle A B C$, from point O join lines $O B, O C$ and $O A$.
(i) In right angled $\triangle O F A$,

$$
\begin{equation*}
O A^{2}=O F^{2}+A F^{2} \tag{i}
\end{equation*}
$$

(By Pythagoras theorem)
$\Rightarrow \quad O A^{2}-O F^{2}=A F^{2}$
Similarly, in $\triangle O B D, O B^{2}-O D^{2}=B D^{2}$
and in $\triangle O C E, O C^{2}-O E^{2}=C E^{2}$
On adding Eqs. (i), (ii) and (iii), we get
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) From part Eq. (i), we get
$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
Similarly,

$$
\begin{equation*}
O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=B F^{2}+C D^{2}+A E^{2} \tag{v}
\end{equation*}
$$

From Eqs. (iv) and (v), we have

$$
A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}
$$

Question 9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Solution Let B be the position of the window and $C B$ be the length of the ladder.
Then,

$$
\begin{array}{ll}
A B=8 \mathrm{~m} & \text { (Height of window) } \\
: 10 \mathrm{~m} & \text { (Length of ladder) }
\end{array}
$$

Let $A C=x \mathrm{~m}$ be the distance of the foot of the ladder from the base of the wall.
Using Pythagoras theorem in $\triangle A B C$, we get

$$
\begin{array}{rlrl}
& & A C^{2}+A B^{2} & =B C^{2} \\
\therefore & x^{2}+(8)^{2} & =1+(10)^{2} \\
\Rightarrow & x^{2} & =100-64=36 \\
\Rightarrow & x & =6, \text { i.e., } A C=6 \mathrm{~m}
\end{array}
$$

Question 10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
Solution Let $A B$ be the vertical pole of height 18 m . A guy wire is of length $B C=24 \mathrm{~m}$.

Let $A C=x \mathrm{~m}$ be the distance of the stake from the base of the pole.
Using Pythagoras theorem in $\triangle A B C$, we get
i.e.,

$$
A C^{2}+A B^{2}=B C^{2}
$$

$\therefore \quad x^{2}+(18)^{2}=(24)^{2}$
$\Rightarrow \quad x^{2}=(24)^{2}-(18)^{2}$

$$
=576-324
$$

$$
=252
$$

$\Rightarrow \quad x=\sqrt{252} \mathrm{~m}$
$(\because$ We take positive sign because cannot be negative)
$\Rightarrow \quad x=6 \sqrt{7} \mathrm{~m}$

Question 11. An aeroplane leaves an airport and flies due North at a speed of $1000 \mathrm{kmh}^{-1}$. At the same time, another aeroplane leaves the same airport and flies due West at a speed of $1200 \mathrm{kmh}^{-1}$. How far apart will be two planes after $1 \frac{1}{2} \mathrm{~h}$?
Solution The first plane travels distance $B C$ in the direction of North in $1 \frac{1}{2} \mathrm{~h}$ at speed of $1000 \mathrm{~km} / \mathrm{h}$.
\therefore

$$
\begin{aligned}
B C & =1000 \times \frac{3}{2} \mathrm{~km} \\
& =1500 \mathrm{~km}
\end{aligned}
$$

The second plane travels distance $B A$ in the direction of West in $1 \frac{1}{2} \mathrm{~h}$ at a speed of $1200 \mathrm{~km} / \mathrm{h}$.

$$
\therefore \quad B A=1200 \times \frac{3}{2}=1800 \mathrm{~km}
$$

In right angled $\triangle A B C$,

$$
\begin{array}{rlr}
A C^{2} & =A B^{2}+B C^{2} & \text { (By Pythagoras theorem) } \\
& =(1800)^{2}+(1500)^{2} \\
& =3240000+2250000 \\
& =5490000 \\
\Rightarrow \quad A C & =\sqrt{5490000} \mathrm{~m} \\
\Rightarrow \quad A C & =300 \sqrt{61} \mathrm{~m}
\end{array}
$$

Question 12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the foot of the poles is 12 m , find the distance between their tops.
Solution Let $B C$ and $A D$ be the two poles of heights 11 m and 6 m .
Then,

$$
\begin{aligned}
C E & =B C-A D \\
& =11-6 \\
& =5 \mathrm{~cm}
\end{aligned}
$$

Let distance between tops of two poles $D C=x \mathrm{~m}$ Using Pythagoras theorem in $\triangle D E C$, we get
i.e., $\quad D C^{2}=D E^{2}+C E^{2} \Rightarrow x^{2}=(12)^{2}+(5)^{2}=169 \Rightarrow x=13$

Hence, distance between their tops $=13 \mathrm{~m}$
Question 13. D and E are points on the sides $C A$ and $C B$, respectively of a $\triangle A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

Solution Draw a right $\triangle A B C$ at C. Take D and E points on the sides $C A$ and $B C$ and join $E D, B D$ and $E A$.

In right angled $\triangle A C E$,

$$
\begin{equation*}
A E^{2}=C A^{2}+C E^{2} \tag{i}
\end{equation*}
$$

(By Pythagoras theorem)
and in right angled $\triangle B C D$,

$$
\begin{equation*}
B D^{2}=B C^{2}+C D^{2} \tag{ii}
\end{equation*}
$$

On adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& A E^{2}+B D^{2}=\left(C A^{2}+C E^{2}\right)+\left(B C^{2}+C D^{2}\right)=\left(B C^{2}+C A^{2}\right)+\left(C D^{2}+C E^{2}\right) \\
&\left(\because \ln \triangle A B C, B A^{2}=B C^{2}+C A^{2} \text { and } \ln \triangle E C D, D E^{2}=C D^{2}+C E^{2}\right) \\
& B A^{2}+D E^{2} \quad \text { (By Pythagoras theorem) } \\
& \therefore \quad A E^{2}+B D^{2}=A B^{2}+D E^{2} \quad
\end{aligned}
$$

Hence proved.

Question 14. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see in figure). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

Solution

Given,
\Rightarrow
and
In $\triangle A B D$,
In $\triangle A C D$,

$$
\begin{align*}
D B & =3 C D \\
C D & =\frac{1}{4} B C \tag{i}
\end{align*}
$$

On subtracting Eq. (iii) from Eq. (ii), we get

$$
\begin{aligned}
A B^{2}-A C^{2} & =D B^{2}-C D^{2} \\
& =\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2} \\
& =\frac{9}{16} B C^{2}-\frac{1}{16} B C^{2}=\frac{1}{2} B C^{2} \\
\Rightarrow \quad 2 A B^{2}-2 A C^{2}=B C^{2} & \Rightarrow 2 A B^{2}=2 A C^{2}+B C^{2}
\end{aligned}
$$

Hence proved.
Question 15. In an equilateral $\triangle A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

Solution Draw $A B C$ is an equilateral triangle, D is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Draw a line $A E$ is perpendicular to $B C$.

$$
\begin{equation*}
A B=B C=C A=a \tag{Say}
\end{equation*}
$$

(By property of equilateral triangle)

$$
\begin{array}{ll}
& B D=\frac{1}{3} B C=\frac{1}{3} a \\
\Rightarrow & C D=\frac{2}{3} B C=\frac{2}{3} a \\
\because & A E \perp B C \\
\Rightarrow & B E=E C=\frac{1}{2} a
\end{array}
$$

(\because In an equilateral triangle altitude $A E$ is perpendicular bisector of $B C$.)

$$
D E=B E-B D=\frac{1}{2} a-\frac{1}{3} a=\frac{1}{6} a
$$

Using Pythagoras theorem in $\triangle A D E$,

$$
\begin{aligned}
A D^{2} & =A E^{2}+D E^{2} \\
& =A B^{2}-B E^{2}+D E^{2} \\
& =a^{2}-\left(\because \text { Right } \triangle A B E, A E^{2}+\left(\frac{1}{6} a\right)^{2}\right. \\
& \left.=a^{2}-\frac{1}{4} a^{2}+\frac{1}{36} a^{2}-B E^{2}\right) \\
& =\frac{(36-9+1) a^{2}}{36} \\
& =\frac{28}{36} a^{2} \\
& =\frac{7}{9} A B^{2} \\
\Rightarrow \quad 9 A D^{2} & =7 A B^{2}
\end{aligned}
$$

Hence proved.

Question 16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Solution Draw $\triangle A B C$ is an equilateral triangle of side a.

and

$$
A D \perp B C
$$

Let
Now,

$$
A D=x
$$

$$
B D=C D=\frac{1}{2} B C=\frac{1}{2} a
$$

(In an equilateral triangle altitude $A D$ is a perpendicular bisector of $B C$) In right angled $\triangle A B D$,

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
& \Rightarrow a^{2}=x^{2}+\left(\frac{1}{2} a\right)^{2} \Rightarrow a^{2}=x^{2}+\frac{1}{4} a^{2} \\
& \Rightarrow \quad 4 a^{2}=4 x^{2}+a^{2} \Rightarrow 3 a^{2}=4 x^{2}
\end{aligned}
$$

Hence proved.
Question 17. Tick the correct answer and justify : In $\triangle A B C, A B=6 \sqrt{3}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. The angle B is :
(a) 120°
(b) 60°
(c) 90°
(d) 45°

Solution (c)

Given $B C=6 \mathrm{~cm}$ and $A B=6 \sqrt{3} \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$
Now,

$$
\begin{aligned}
A B^{2}+B C^{2} & =(6 \sqrt{3})^{2}+(6)^{2} \\
& =108+36=144=(12)^{2}=(A C)^{2}
\end{aligned}
$$

$\Rightarrow \triangle A B C$ is right angled at B

\Rightarrow	$\angle B=90^{\circ}$
Also,	$B C<A B$

$\Rightarrow \angle A$ is less than $\angle C$
$\Rightarrow \angle A$ cannot be more than 45°
$\begin{array}{ll}\Rightarrow & \angle A=30^{\circ} \\ \Rightarrow & \angle B=90^{\circ}-30^{\circ}=60^{\circ} .\end{array}$

4 Triangles

Exercise 4.6 (Optional)*

Question 1. In figure, $P S$ is the bisector of $\angle Q P R$ of $\triangle P Q R$, prove that $\frac{Q S}{S R}=\frac{P Q}{P R}$.

Solution Given, in figure, $P S$ is the bisector of $\angle Q P R$ of $\triangle P Q R$. Now, draw $R T \| S P$ to meet $Q P$ produced in T.

Proof $\because R T \| S P$ and transversal $P R$ intersects them
\therefore

$$
\angle 1=\angle 2
$$

(Alternate interior angle)...(i)
$\because R T \| S P$ and transversal QT intersects them

(\because Sides opposite to equal angles of a triangle are equal)
Now, in $\triangle Q R T$,
$P S \| R T$
(By construction)
$\begin{array}{ll}\therefore & \frac{Q S}{S R}=\frac{P Q}{P T} \\ \Rightarrow & \frac{Q S}{S R}=\frac{P Q}{P R}\end{array}$
(By basic proportionally theorem)
[From Eq. (iii)]

Question 2. In figure, D is a point on hypotenuse $A C$ of $\triangle A B C$, such that $B D \perp A C, D M \perp B C$ and $D N \perp A B$. Prove that
(i) $D M^{2}=D N \cdot M C$
(ii) $D N^{2}=D M \cdot A N$

Solution Given that, D is a point on hypotenuse $A C$ of $\triangle A B C, D M \perp B C$ and $D N \perp A B$.
Now, join $N M$. Let $B D$ and $N M$ intersect at O.

Proof
(i) In $\triangle D M C$ and $\triangle N D M$,

$$
\begin{aligned}
& \angle D M C=\angle N D M \\
& \angle M C D=\angle D M N \\
& \text { Let } \quad M C D=\angle 1 \\
& \text { Then, } \quad \angle M D C=90^{\circ}-\angle 1 \\
& \left(\because \angle M C D+\angle M D C+\angle D M C=180^{\circ}\right) \\
& \therefore \quad \angle O D M=90^{\circ}-\left(90^{\circ}-\angle 1\right) \\
& =\angle 1 \\
& \Rightarrow \quad \angle D M N=\angle 1 \\
& \therefore \quad \triangle D M O \sim \triangle N D M \quad \text { (AA similarity criterion) } \\
& \therefore \quad \frac{D M}{N D}=\frac{M C}{D M} \\
& \text { (Corresponding sides of the similar triangles are proportional) } \\
& \Rightarrow \quad D M^{2}=M C \cdot N D
\end{aligned}
$$

(ii) In $\triangle D N M$ and $\triangle N A D$,

$$
\begin{array}{llr}
& \angle N D M & =\angle A N D \\
\text { Let } & \angle D N M & =\angle N A D \\
\text { Then, } & \angle N A D=\angle 2 \\
\therefore & \angle N D A=90^{\circ}-\angle 2 & \left(\because \angle N D A+\angle D A N+\angle D N A=180^{\circ}\right) \\
\therefore & \angle O D N=90^{\circ}-\left(90^{\circ}-\angle 2\right)=\angle 2 \\
\therefore & \angle D N O=\angle 2 \\
\therefore & \triangle D N M \sim \triangle N A D & \\
\Rightarrow & \frac{D N}{N A}=\frac{D M}{N D} \\
\Rightarrow & \frac{D N}{A N}=\frac{D M}{D N} \\
& & D N^{2}=D M \times A N
\end{array}
$$

Question 3. In figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+B C^{2}=2 B C \cdot B D$.

Solution Given that, in figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced.
Proof In right $\triangle A B C$,

$$
\begin{aligned}
\because \quad \angle D & =90^{\circ} \\
\therefore \quad A C^{2} & =A D^{2}+D C^{2} \quad \text { (By Pythagoras theorem) } \\
& =A D^{2}+(B D+B C)^{2} \quad[\because D C=D B+B C] \\
& =\left(A D^{2}+D B^{2}\right)+B C^{2}+2 B D \cdot B C \\
& \quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
& =A B^{2}+B C^{2}+2 B C \cdot B D \\
& \\
& \\
& \left.=\text { In right } \triangle A D B \text { with } \angle D=90^{\circ}, A B^{2}=A D^{2}+D B^{2}\right)
\end{aligned}
$$

(By Pythagoras theorem)

Question 4. In figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}=2 B C \cdot B D$.

Solution Given that, in figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$.
Proof In right $\triangle A D C$,

$$
\left.\begin{array}{rlr}
\therefore & \angle D & =90^{\circ} \\
& A C^{2} & =A D^{2}+D C^{2} \\
& & A D^{2}+(B C-B D)^{2} \\
& & \text { (By Pythagoras theorem) } \\
& & \left(\because B C=B D+D D^{2}+B C^{2}+B D^{2}-2 B C \cdot B D\right. \\
& & \left(\because\left(a D^{2}+B D^{2}\right)+B C^{2}-2 B C \cdot B D\right.
\end{array}\right)
$$

$\left\{\therefore\right.$ In right $\triangle A D B$ with $\left.\angle D=90^{\circ}, A B^{2}=A D^{2}+B D^{2}\right\} \quad$ (By Pythagoras theorem)
Question 5. In figure, $A D$ is a median of a $\triangle A B C$ and $A M \perp B C$. Prove that
(i) $A C^{2}=A D^{2}+B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
(ii) $A B^{2}=A D^{2}-B C \cdot D M+\left(\frac{B C}{2}\right)^{2}$
(iii) $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

Solution Given that, in figure, $A D$ is a median of a $\triangle A B C$ and $A M \perp B C$.
Proof (i) In right $\triangle A M C$,

$$
\begin{array}{rlr}
\because \quad \angle M & =90^{\circ} & \\
\therefore \quad A C^{2} & =A M^{2}+M C^{2} & \\
& =A M^{2}+(M D+D C)^{2} & (\text { By Pythagoras theorem }) \\
& =\left(A M^{2}+M D^{2}\right)+D C^{2}+2 M D \cdot D C & (\because M C=M D+D C) \\
& & {\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]} \\
& & \\
{[\because \text { In right } \triangle A M D \text { with }} & \left.\angle M=90, A C^{2}+M C^{2}=A D^{2}(\text { By Pythagoras theorem })\right]
\end{array}
$$

$$
\begin{align*}
&= A D^{2}+\left(\frac{B C}{2}\right)^{2}+2\left(\frac{B C}{2}\right) \cdot D M \\
& {[\because 2 D C=B C(A D \text { is a median of } \triangle A B C)] } \\
& \therefore \quad A C^{2}=A D^{2}+\left(\frac{B C}{2}\right)^{2}+B C \cdot D M \tag{i}
\end{align*}
$$

(ii) In right $\triangle A M B$,

$$
\begin{array}{rlr}
\because & \angle M & =90^{\circ} \\
\therefore & A B^{2} & =A M^{2}+M B^{2} \\
& =A M^{2}+(B D-M D)^{2} & \text { (By Pythagoras theorem) } \\
& =A M^{2}+B D^{2}+M D^{2}-2 B D \cdot M D & {[\because B D=B M+M D]} \\
& & {\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]} \\
& & \left(A M^{2}+M D^{2}\right)+B D^{2}-2 B D \cdot M D \\
& =A D^{2}+B D^{2}-2 B D \cdot M D &
\end{array}
$$

$\left[\because\right.$ In right $\triangle A M D$ with $\angle M=90^{\circ}$,

$$
\begin{gathered}
A M^{2}+M D^{2}=A D^{2} \quad \text { (By Pythagoras theorem] } \\
=A D^{2}-2\left(\frac{B C}{2}\right) \cdot D M+\left(\frac{B C}{2}\right)^{2}
\end{gathered}
$$

$(\because 2 B D=B C, A D$ is a median of $\triangle A B C)$

$$
\begin{equation*}
\therefore \quad A B^{2}=A D^{2}-B C \cdot D M+\left(\frac{B C}{2}\right)^{2} \tag{ii}
\end{equation*}
$$

(iii) On adding Eqs. (i) and (ii), we get

$$
A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2}(B C)^{2}
$$

Question 6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
Solution Given that, $A B C D$ is a parallelogram whose diagonals are $A C$ and $B D$.

Now, draw $A M \perp D C$ and $B N \perp D$ (produced).
Proof In right $\triangle A M D$ and $\triangle B N C$,

$$
\begin{aligned}
& A D=B C \quad \text { (Opposite sides of a parallelogram) } \\
& A M=B N
\end{aligned}
$$

(Both are altitudes of the same parallelogram to the same base)
$\therefore \quad \triangle A M D \cong \triangle B N C \quad$ (RHS congruence criterion)
$\therefore \quad M D=N C$
(CPCT)...(i)
In right $\triangle B N D$,

$$
\begin{array}{llr}
\because \quad \angle N & =90^{\circ} & \\
\therefore \quad B D^{2} & =B N^{2}+D N^{2} \quad \text { (By Pythagoras theorem) } \\
& =B N^{2}+(D C+C N)^{2} \quad(\because D N=D C+C N) \\
& =B N^{2}+D C^{2}+C N^{2}+2 D C \cdot C N \quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
& & =\left(B N^{2}+C N^{2}\right)+D C^{2}+2 D C \cdot C N \\
& & B C^{2}+D C^{2}+2 D C \cdot C N
\end{array}
$$

$\left(\because\right.$ In right $\triangle B N C$ with $\left.\angle N=90^{\circ}\right)$

$$
B N^{2}+C N^{2}=B C^{2} \quad(\text { By Pythagoras theorem })
$$

In right $\triangle A M C, \quad \angle M=90^{\circ}$

$$
\begin{array}{rlr}
\therefore \quad A C^{2} & =A M^{2}+M C^{2} & (\because M C=D C-D M) \\
& =A M^{2}+(D C-D M)^{2} \quad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right] \\
& =A M^{2}+D C^{2}+D M^{2}-2 D C \cdot D M \\
& =\left(A M^{2}+D M^{2}\right)+D C^{2}-2 D C \cdot D M \\
& =A D^{2}+D C^{2}-2 D C \cdot D M
\end{array}
$$

$\left[\because\right.$ In right triangle $A M D$ with $\angle M=90^{\circ}, A D^{2}=A M^{2}+D M^{2}$ (By Pythagoras theorem)]

$$
\begin{equation*}
=A D^{2}+A B^{2}=2 D C \cdot C N \tag{iii}
\end{equation*}
$$

$[\because D C=A B$, opposite sides of parallelogram and $B M=C N$ from Eq. (i) $]$ Now, on adding Eqs. (iii) and (ii), we get

$$
\begin{aligned}
A C^{2}+B D^{2} & =\left(A D^{2}+A B^{2}\right)+\left(B C^{2}+D C^{2}\right) \\
& =A B^{2}+B C^{2}+C D^{2}+D A^{2}
\end{aligned}
$$

Question 7. In figure, two chords $A B$ and $C D$ intersect each other at the point P. Prove that
(i) $\triangle A P C \sim \triangle D P B$
(ii) $A P \cdot P B=C P \cdot D P$

Solution Given that, in figure, two chords $A B$ and $C D$ intersects each other at the point P.
Proof (i) $\triangle A P C$ and $\triangle D P B$

	$\angle A P C=\angle D P B$	(Vertically opposite angles)
	$\angle C A P=\angle B D P$	(Angles in the same segment)
\therefore	$\triangle A P C \sim \angle D P B$	(AA similarity criterion)
	$\triangle A P C \sim \triangle D P B$	[Proved in (i)]
\therefore	$\frac{A P}{D P}=\frac{C P}{B P}$	
	$(\because$ Corresponding sides of two	milar triangles are proportional)
\Rightarrow	$A P \cdot B P=C P \cdot D P$	
\Rightarrow	$A P \cdot P B=C P \cdot D P$	

Question 8. In figure, two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) $\triangle P A C \sim \triangle P D B$
(ii) $P A \cdot P B=P C \cdot P D$

Solution Given that, in figure, two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) out the circle.
Proof (i) We know that, in a cyclic quadrilaterals, the exterior angle is equal to the interior opposite angle.

Therefore,

$$
\begin{align*}
& \angle P A C=\angle P D B \tag{i}\\
& \angle P C A=\angle P B D \tag{ii}
\end{align*}
$$

and $\quad \angle P C A=\angle P B D$
In view of Eqs. (i) and (ii), we get

$$
\triangle P A C \sim \triangle P D B
$$

(ii) $\triangle P A C \sim \triangle P D B$
[Proved in (i)]
$\therefore \quad \frac{P A}{P D}=\frac{P C}{P B}$
$(\because$ Corresponding sides of the similar triangles are proportional)
$\Rightarrow \quad P A \cdot P B=P C \cdot P D$

Question 9. In figure, D is a point on side $B C$ of $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that $A D$ is the bisector of $\angle B A C$.

Solution Given that, D is a point on side $B C$ of $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Now, from $B A$ produce cut off $A E=A$. Join $C E$.

Proof

$$
\Rightarrow \quad \frac{B D}{C D}=\frac{A B}{A E} \quad[\because A C=A E \text { (by construction) }]
$$

$\therefore \ln \triangle B C E$,

$A D \\| C E$		
\therefore	$\angle B A D=\angle A E C$	(Corresponding angle)...(i)
and	$\angle C A D=\angle A C E$	(Alternate interior angle)...(ii)
\because	$A C=A E$	(By construction)
\therefore	$\angle A E C=\angle A C E$...(iii)

(Angles opposite equal sides of a triangle are equal)
Using Eqs. (i), (ii) and (iii), we get

$$
\angle B A D=\angle C A D
$$

i.e., $A D$ is the bisector of $\angle B A C$.

Question 10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her
 rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of $5 \mathrm{cms}^{-1}$, what will be the horizontal distance of the fly from her after 12 s ?

Solution Length of the string that she has out

$$
\begin{aligned}
& \left.=\sqrt{(1.8)^{2}+(2.4)^{2}} \quad \text { (Using Pythagoras theorem }\right) \\
& =\sqrt{3.24+5.76}=3 \mathrm{~m}
\end{aligned}
$$

Hence, she has 3 m string out.
Length of the string pulled in $12 \mathrm{~s}=5 \times 12=60 \mathrm{~cm}=0.6 \mathrm{~m}$

\therefore Length of remaining string left out $=3.0-0.6=2.4 \mathrm{~m}$

$$
\begin{array}{rlrl}
B D^{2} & =A D^{2}-A B^{2} \quad \text { (By Pythagoras theorem) } \\
& =(2.4)^{2}-(1.8)^{2}=5.76-3.24=2.52 \\
\Rightarrow \quad B D & =\sqrt{2.52}=1.59 \mathrm{~m} & \text { (Approx.) }
\end{array}
$$

Hence, the horizontal distance of the fly from Nazima after 12 s

$$
=1.2+1.59=2.79 \mathrm{~m}
$$

(Approx.)

